Systematic review of artificial intelligence methods for detection and segmentation of unruptured intracranial aneurysms using medical imaging
Resumen
Unruptured intracranial aneurysms are protuberances that appear in cerebral arteries, and their diagnostic evaluation can be a complex, time-consuming, and exhaustive task. In recent years, computer-aided systems have been developed to improve diagnostic processes. Although the proposed methods have already been reviewed to assess their suitability for clinical use, the segmentation methods have not been reviewed in detail, nor has there been a standardized way to compare segmentation and detection tasks. A systematic review was conducted to examine the technical and methodological factors contributing to this limitation. The analysis encompassed 49 studies conducted between 2019 and 2023 that utilized artificial intelligence methods and any medical imaging modality for the detection or segmentation of intracranial aneurysms. Most of the included studies focused exclusively on detection (57%), magnetic resonance angiography was the predominant imaging modality (47%), and the methodologies generally used 3D imaging as the input (71%). The reported sensitivities ranged from 0.68 to 0.90, specificities from 0.18 to 1.0, false positives per case from 0.18 to 13.8, and the Dice similarity coefficient from 0.53 to 0.98. Variations in aneurysm size were found to have a substantial impact on system performance. Studies were evaluated using a diagnostic accuracy study quality assessment tool, which revealed significant concerns regarding applicability. These concerns primarily stem from the poor reproducibility and inconsistent reporting of metrics. Recommendations for reporting outcomes were made to compare procedures across different types of imaging and tasks.
