Mostrar el registro sencillo del ítem

dc.contributor.authorRoacho Pérez, Jorge A
dc.date.accessioned2019-01-15T23:37:32Z
dc.date.available2019-01-15T23:37:32Z
dc.date.issued2018-01-01
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/6053
dc.description.abstractDue to the high toxicity and side effects of the use of traditional chemotherapy in cancer, scientists are working on the development of alternative therapeutic technologies. An example of this is the use of death‑induced gene therapy. This therapy consists of the killing of tumor cells via transfection with plasmid DNA (pDNA) that contains a gene which produces a protein that results in the apoptosis of cancerous cells. The cell death is caused by the direct activation of apoptosis (apoptosis‑induced gene therapy) or by the protein toxic effects (toxin‑induced gene therapy). The introduction of pDNA into the tumor cells has been a challenge for the development of this therapy. The most recent implementation of gene vectors is the use of polymeric or inorganic nanoparticles, which have biological and physicochemical properties (shape, size, surface charge, water interaction and biodegradation rate) that allow them to carry the pDNA into the tumor cell. Furthermore, nanoparticles may be functionalized with specific molecules for the recognition of molecular markers on the surface of tumor cells. The binding between the nanoparticle and the tumor cell induces specific endocytosis, avoiding toxicity in healthy cells. Currently, there are no clinical protocols approved for the use of nanoparticles in death‑induced gene therapy. There are still various challenges in the design of the perfect transfection vector, however nanoparticles have been demonstrated to be a suitable candidate. This review describes the role of nanoparticles used for pDNA transfection and key aspects for their use in death‑induced gene therapy.es_MX
dc.description.urihttps://www.spandidos-publications.com/mmr/17/1/1413?text=fulltextes_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectgene therapy, cancer nanomedicine, non-viral vector, suicide gene therapy, apoptosis-induced gene therapy, pDNA, molecular markerses_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleNanoparticles for death‑induced gene therapy in cancer (Review)es_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista1es_MX
dcrupi.volumen17es_MX
dcrupi.nopagina1313-1420es_MX
dc.identifier.doi10.3892/mmr.2017.8091es_MX
dc.contributor.coauthorChapa Gonzalez, Christian
dc.contributor.coauthorGarcia Casillas, Perla Elvia
dc.journal.titleMolecular medicine reportses_MX
dc.lgacBIOMATERIALES Y MATERIALES BIOMIMÉTICOSes_MX
dc.cuerpoacademicoCiencia e Ingeniería de Materialeses_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09