Mostrar el registro sencillo del ítem
Using Regression Models for Predicting the Product Quality in a Tubing Extrusion Process
dc.contributor.author | Garcia, Vicente | |
dc.date.accessioned | 2018-12-07T18:21:11Z | |
dc.date.available | 2018-12-07T18:21:11Z | |
dc.date.issued | 2019-08-01 | |
dc.identifier.uri | http://cathi.uacj.mx/20.500.11961/4667 | |
dc.description.abstract | Quality in a manufacturing process implies that the performance characteristics of the product and the process itself are designed to meet specific objectives. Thus, accurate quality prediction plays a principal role in delivering high-quality products to further enhance competitiveness. In tubing extrusion, measuring of the inner and outer diameters is typically performed either manually or with ultrasonic or laser scanners. This paper shows how regression models can result useful to estimate both those physical quality indices in a tube extrusion process. A real-life data set obtained from a Mexican extrusion manufacturing company is used for the empirical analysis. Experimental results demonstrate that k nearest-neighbor and support vector regression methods (with a linear kernel and with a radial basis function) are especially suitable for predicting the inner and outer diameters of an extruded tube based on the evaluation of 15 extrusion and pulling process parameters. | es_MX |
dc.description.uri | https://link.springer.com/article/10.1007/s10845-018-1418-7 | es_MX |
dc.language.iso | en_US | es_MX |
dc.relation.ispartof | Producto de investigación IIT | es_MX |
dc.relation.ispartof | Instituto de Ingeniería y Tecnología | es_MX |
dc.subject | Regression models | es_MX |
dc.subject | Product quality prediction | es_MX |
dc.subject | Extrusion process | es_MX |
dc.subject | Support vector regression | es_MX |
dc.subject | K nearest-neighbor | es_MX |
dc.subject.other | info:eu-repo/classification/cti/7 | es_MX |
dc.title | Using Regression Models for Predicting the Product Quality in a Tubing Extrusion Process | es_MX |
dc.type | Artículo | es_MX |
dcterms.thumbnail | http://ri.uacj.mx/vufind/thumbnails/rupiiit.png | es_MX |
dcrupi.instituto | Instituto de Ingeniería y Tecnología | es_MX |
dcrupi.cosechable | Si | es_MX |
dcrupi.norevista | 1 | es_MX |
dcrupi.volumen | 1 | es_MX |
dcrupi.nopagina | 1-10 | es_MX |
dc.identifier.doi | https://doi.org/10.1007/s10845-018-1418-7 | es_MX |
dc.contributor.coauthor | Sánchez, J. Salvador | |
dc.contributor.coauthor | Rodríguez-Picón, Luis Alberto | |
dc.contributor.coauthor | Méndez-González, Luis Carlos | |
dc.contributor.coauthor | Ochoa Domínguez, Humberto | |
dc.journal.title | Journal of Intelligent Manufacturing | es_MX |
dc.lgac | PROCESAMIENTO DIGITAL DE SEÑALES | es_MX |
dc.cuerpoacademico | Procesamiento de Señales | es_MX |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |