Mostrar el registro sencillo del ítem

dc.contributor.authorMartinez-Garcia, Edgar
dc.date.accessioned2018-12-05T17:58:52Z
dc.date.available2018-12-05T17:58:52Z
dc.date.issued2018-03-09
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/4541
dc.description.abstractThis work presents the modeling, control architecture and simulation of a decentralized multi-robot system for transporting material in a warehouse. Each robot has a task scheduler comprising two different neural networks for task allocation and fault tolerance. The path planner consists of a first-order dynamical state equation to control the robot’s four-wheel asynchronous driving and steering, as well as a partial differential equation to coordinate speeds and arrival times. The task allocation and motion coordination combine the robot’s kinematic control law with a one-layer artificial neural network that classifies five-dimensional symbolic logical equations that define the state transitions between asynchronous events. These events include carry and fetch, material supply, robots stop, obstacle avoidance and battery state. Another multilayer artificial neural network reads the same state inputs for fault detection and recovery. The two neural systems feed forward a navigation planner, which uses a partial differential equation to coordinate the robot’s speed and its relaxation time with respect to the robot in front of it. The energy cost is measured by a Lagrangian function. The proposed planning control scheme was computationally validated through parallel computing simulations. The system is shown to be consistent, reliable and feasible, and it allows for fast navigational tasks.es_MX
dc.description.urihttps://journals.sagepub.com/doi/abs/10.1177/0959651818756777?journalCode=piiaes_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectKinematic controles_MX
dc.subjectArtificial neural networkes_MX
dc.subject4WDes_MX
dc.subjectEuler–Lagrangees_MX
dc.subjectdecentralized controles_MX
dc.subjectpath planninges_MX
dc.subjecttask schedulinges_MX
dc.subjectfault tolerancees_MX
dc.subjectparallel computinges_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleNeural control and coordination of decentralized transportation robotses_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista5es_MX
dcrupi.volumen232es_MX
dcrupi.nopagina519-540es_MX
dc.identifier.doihttps://doi.org/10.1177/0959651818756777es_MX
dc.contributor.coauthorcarrillo, victor
dc.contributor.coauthortorres cordoba, rafael
dc.contributor.coauthorLopez-Gonzalez, Elifalet
dc.journal.titleJournal of Systems and Control Engineeringes_MX
dc.lgacRobótica Móviles_MX
dc.cuerpoacademicoMecatrónicaes_MX


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09