Mostrar el registro sencillo del ítem
Sign Language Recognition Using Video, Skeleton Data and Deep Learning
| dc.date.accessioned | 2026-01-07T16:38:30Z | |
| dc.date.available | 2026-01-07T16:38:30Z | |
| dc.date.issued | 2025-10-20 | es_MX |
| dc.identifier.isbn | 978-3-032-09043-0 | |
| dc.identifier.issn | 0302-9743 | |
| dc.identifier.uri | https://cathi.uacj.mx/20.500.11961/33256 | |
| dc.description.abstract | Isolated Sign Language Recognition (SLR) focuses on classifying individual signs from video, a task typically addressed using accurate but computationally intensive vision-based models. This work explores skeleton-based representations extracted from RGB sequences, which capture essential motion patterns with lower dimensionality. We propose four deep learning models combining convolutional layers with GRU or minGRU units, processing skeletons as 1D vectors or 3D joint trajectories, with ensembles to improve robustness. Results show skeleton-based models achieve accuracy comparable to video-based approaches while requiring far fewer resources. Notably, the Conv1D+GRU ensemble reaches 88.32% Top-1 accuracy, nearly matching 88.90% of ResNet2D+1, while cutting training time from over 43 h to about 1 h and inference from hundreds of seconds to under one second on the test set. Ensembles consistently enhance performance across architectures. These findings show that skeleton-based modeling retains discriminative information, providing a fast, efficient solution for SLR. | es_MX |
| dc.description.uri | https://link.springer.com/chapter/10.1007/978-3-032-09044-7_17 | es_MX |
| dc.language.iso | spa | es_MX |
| dc.publisher | Springer | es_MX |
| dc.relation.ispartof | Producto de investigación IIT | es_MX |
| dc.relation.ispartof | Instituto de Ingeniería y Tecnología | es_MX |
| dc.rights | Atribución-NoComercial-SinDerivadas 2.5 México | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/mx/ | * |
| dc.subject | sign language recognition, deep learning, recurrent neural networks, skeleton data | es_MX |
| dc.title | Sign Language Recognition Using Video, Skeleton Data and Deep Learning | es_MX |
| dc.type | Memoria in extenso | es_MX |
| dcterms.thumbnail | http://ri.uacj.mx/vufind/thumbnails/rupiiit.png | es_MX |
| dcrupi.instituto | Instituto de Ingeniería y Tecnología | es_MX |
| dcrupi.cosechable | Si | es_MX |
| dcrupi.subtipo | Investigación | es_MX |
| dcrupi.alcance | Internacional | es_MX |
| dcrupi.pais | México | es_MX |
| dc.contributor.coauthor | Mederos, Boris | |
| dc.contributor.coauthor | Mejia, Jose | |
| dc.contributor.coauthor | Díaz Román, José David | |
| dc.contributor.coauthor | Rascon Madrigal, Lidia Hortencia | |
| dc.contributor.coauthor | Cota Ruiz, Juan De Dios | |
| dcrupi.tipoevento | Congreso | es_MX |
| dcrupi.evento | 24th Mexican International Conference on Artificial Intelligence | es_MX |
| dcrupi.estado | Guanajuato | es_MX |
| dc.contributor.authorexterno | Medina Reyes, Alejandro | |
| dcrupi.colaboracionext | No | es_MX |
| dcrupi.impactosocial | Si, ayuda a las personas con discapacidad auditiva | es_MX |
| dcrupi.vinculadoproyext | No | es_MX |
| dcrupi.pronaces | Salud | es_MX |
| dcrupi.vinculadoproyint | No | es_MX |
Archivos en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Memoria en extenso [336]

