Mostrar el registro sencillo del ítem

dc.date.accessioned2026-01-07T16:38:30Z
dc.date.available2026-01-07T16:38:30Z
dc.date.issued2025-10-20es_MX
dc.identifier.isbn978-3-032-09043-0
dc.identifier.issn0302-9743
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/33256
dc.description.abstractIsolated Sign Language Recognition (SLR) focuses on classifying individual signs from video, a task typically addressed using accurate but computationally intensive vision-based models. This work explores skeleton-based representations extracted from RGB sequences, which capture essential motion patterns with lower dimensionality. We propose four deep learning models combining convolutional layers with GRU or minGRU units, processing skeletons as 1D vectors or 3D joint trajectories, with ensembles to improve robustness. Results show skeleton-based models achieve accuracy comparable to video-based approaches while requiring far fewer resources. Notably, the Conv1D+GRU ensemble reaches 88.32% Top-1 accuracy, nearly matching 88.90% of ResNet2D+1, while cutting training time from over 43 h to about 1 h and inference from hundreds of seconds to under one second on the test set. Ensembles consistently enhance performance across architectures. These findings show that skeleton-based modeling retains discriminative information, providing a fast, efficient solution for SLR.es_MX
dc.description.urihttps://link.springer.com/chapter/10.1007/978-3-032-09044-7_17es_MX
dc.language.isospaes_MX
dc.publisherSpringeres_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectsign language recognition, deep learning, recurrent neural networks, skeleton dataes_MX
dc.titleSign Language Recognition Using Video, Skeleton Data and Deep Learninges_MX
dc.typeMemoria in extensoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisMéxicoes_MX
dc.contributor.coauthorMederos, Boris
dc.contributor.coauthorMejia, Jose
dc.contributor.coauthorDíaz Román, José David
dc.contributor.coauthorRascon Madrigal, Lidia Hortencia
dc.contributor.coauthorCota Ruiz, Juan De Dios
dcrupi.tipoeventoCongresoes_MX
dcrupi.evento24th Mexican International Conference on Artificial Intelligencees_MX
dcrupi.estadoGuanajuatoes_MX
dc.contributor.authorexternoMedina Reyes, Alejandro
dcrupi.colaboracionextNoes_MX
dcrupi.impactosocialSi, ayuda a las personas con discapacidad auditivaes_MX
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesSaludes_MX
dcrupi.vinculadoproyintNoes_MX


Archivos en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09