Mostrar el registro sencillo del ítem

dc.date.accessioned2026-01-06T14:54:15Z
dc.date.available2026-01-06T14:54:15Z
dc.date.issued2025-09-29es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/32979
dc.description.abstractObjective. This study evaluated the predictive performance of machine learning and deep learning models in estimating manual strength in men and women using anthropometric variables. Methods. Anthropometric and strength data were collected from 382 participants from the economically active population of Campeche, Mexico. Predictive models implemented included linear regression, random forest, AdaBoost, extreme gradient boosting, TabNet, TabPFN and a custom convolutional neural network. Their performance was assessed using the mean absolute error, mean squared error and explained variance score. Additionally, SHAP (SHapley Additive exPlanations) analysis was conducted to interpret feature importance across models. Results. Deep learning models such as TabNet and TabPFN demonstrated superior prediction accuracy for torque strength, capturing complex non-linear interactions. Linear regression exhibited better generalization, particularly for grip strength prediction. SHAP analysis consistently identified palmar length and elbow-to-fingertip length as the most influential anthropometric predictors. Ensemble methods like random forest and AdaBoost performed well on training data but showed a tendency to overfit. Conclusions. Although advanced models enhanced performance in specific tasks, linear regression remained the most robust for generalization. Feature importance analysis confirmed the biomechanical relevance of the selected predictors. Future applications should balance model complexity with the need for interpretability, depending on ergonomic objectives.es_MX
dc.description.urihttps://www.tandfonline.com/doi/full/10.1080/10803548.2025.2554461es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectanthropometric variableses_MX
dc.subjectgrip strengthes_MX
dc.subject.otherinfo:eu-repo/classification/cti/5es_MX
dc.titleComparison of machine learning and deep learning models in manual strength prediction using anthropometric variableses_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.nopagina1-10es_MX
dc.identifier.doihttps://doi.org/10.1080/10803548.2025.2554461es_MX
dc.contributor.coauthorHernandez Arellano, Juan Luis
dc.contributor.coauthorMaldonado-Macías, Aide Aracely
dc.contributor.coauthorMejia, Jose
dc.journal.titleInternational Journal of Occupational Safety and Ergonomicses_MX
dc.contributor.authorexternoPacheco-Cardín, Mayra
dcrupi.colaboracionextNoes_MX
dcrupi.impactosocialNoes_MX
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesNingunoes_MX
dcrupi.vinculadoproyintNoes_MX


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09