Mostrar el registro sencillo del ítem
Enhancing 3D Printing of Gelatin/Siloxane-Based Cellular Scaffolds Using a Computational Model
| dc.contributor.author | Martinez, Carlos Alberto | |
| dc.date.accessioned | 2025-11-06T18:22:00Z | |
| dc.date.available | 2025-11-06T18:22:00Z | |
| dc.date.issued | 2025-06-29 | es_MX |
| dc.identifier.uri | https://cathi.uacj.mx/20.500.11961/31732 | |
| dc.description.abstract | In recent years, there has been a surge in the extrusion-based 3D printing of materials for various biomedical applications. This work presents a novel methodology for optimizing extrusion-based 3D bioprinting of a gelatin/siloxane hybrid material for biomedical applica tions. A systematic approach integrating rheological characterization, computational fluid Academic dynamics simulation (CFD), and machine-learning-based image analysis, was employed. Rheological tests revealed a shear stress of 50 Pa, a maximum viscosity of 3 × 105 Pa·s, a minimumviscosity of 0.089 Pa·s, and a shear rate of 15 rad/s (27G nozzle, 180 kPa pressure, 32 ◦C temperature, 30 mm/s velocity) for a BIO X bioprinter. While these parameters yielded constructs with 54.5% similarity to the CAD design, a multi-faceted optimization strategy was implemented to enhance fidelity, computational fluid dynamics simulations in SolidWorks, coupled with a custom-develop a binary classifier convolutional neuronal network for post-printing image analysis, facilitated targeted parameter refinement. Subse quent printing optimized parameters (25G nozzle, 170 kPa, 32 ◦C, 20 mm/s) achieved a significantly improved similarity of 92.35% CAD, demonstrating efficacy. The synergistic combination of simulation and machine learning ultimately enabled the fabrication of complex 3D constructs with a high fidelity of 94.13% CAD similarity, demonstrating the efficacy and potential of this integrated approach for advanced biofabrication | es_MX |
| dc.description.uri | https://www.mdpi.com/2073-4360/17/13/1838 | es_MX |
| dc.language.iso | en | es_MX |
| dc.relation.ispartof | Producto de investigación IIT | es_MX |
| dc.relation.ispartof | Instituto de Ingeniería y Tecnología | es_MX |
| dc.rights | CC0 1.0 Universal | * |
| dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
| dc.subject | computational model | es_MX |
| dc.subject | 3D printing | es_MX |
| dc.subject | complex 3D construct | es_MX |
| dc.subject | gelatin/siloxane | es_MX |
| dc.subject.other | info:eu-repo/classification/cti/7 | es_MX |
| dc.title | Enhancing 3D Printing of Gelatin/Siloxane-Based Cellular Scaffolds Using a Computational Model | es_MX |
| dc.type | Artículo | es_MX |
| dcterms.thumbnail | http://ri.uacj.mx/vufind/thumbnails/rupiiit.png | es_MX |
| dcrupi.instituto | Instituto de Ingeniería y Tecnología | es_MX |
| dcrupi.cosechable | Si | es_MX |
| dcrupi.norevista | 13 | es_MX |
| dcrupi.volumen | 17 | es_MX |
| dcrupi.nopagina | 1-23 | es_MX |
| dc.identifier.doi | https://doi.org/10.3390/ polym17131838 | es_MX |
| dc.contributor.coauthor | zuñiga, esmeralda | |
| dc.contributor.coauthor | Castro Carmona, Javier Servando | |
| dc.contributor.coauthor | Chapa, Christian | |
| dc.contributor.coauthor | Méndez-González, Luis Carlos | |
| dc.contributor.alumno | 245124 | es_MX |
| dc.journal.title | Polymers | es_MX |
| dc.contributor.authorexterno | Marcos B., Valenzuela Reyes | |
| dc.contributor.coauthorexterno | Alvarez Lopez, R | |
| dc.contributor.coauthorexterno | Monreal Romero, Humberto | |
| dcrupi.colaboracionext | Universidad Autonoma de Chihuahua, Mexico | es_MX |
| dcrupi.colaboracionext | The University of Texas at El Paso, Estados Unidos | es_MX |
| dc.contributor.alumnoprincipal | 245124 | es_MX |
| dcrupi.impactosocial | Si, en la aplicacion a futuro para la salud | es_MX |
| dcrupi.vinculadoproyext | No | es_MX |
| dcrupi.pronaces | Salud | es_MX |
| dcrupi.vinculadoproyint | No | es_MX |

