Mostrar el registro sencillo del ítem

dc.contributor.authorMartinez, Carlos Alberto
dc.date.accessioned2025-11-06T18:22:00Z
dc.date.available2025-11-06T18:22:00Z
dc.date.issued2025-06-29es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/31732
dc.description.abstractIn recent years, there has been a surge in the extrusion-based 3D printing of materials for various biomedical applications. This work presents a novel methodology for optimizing extrusion-based 3D bioprinting of a gelatin/siloxane hybrid material for biomedical applica tions. A systematic approach integrating rheological characterization, computational fluid Academic dynamics simulation (CFD), and machine-learning-based image analysis, was employed. Rheological tests revealed a shear stress of 50 Pa, a maximum viscosity of 3 × 105 Pa·s, a minimumviscosity of 0.089 Pa·s, and a shear rate of 15 rad/s (27G nozzle, 180 kPa pressure, 32 ◦C temperature, 30 mm/s velocity) for a BIO X bioprinter. While these parameters yielded constructs with 54.5% similarity to the CAD design, a multi-faceted optimization strategy was implemented to enhance fidelity, computational fluid dynamics simulations in SolidWorks, coupled with a custom-develop a binary classifier convolutional neuronal network for post-printing image analysis, facilitated targeted parameter refinement. Subse quent printing optimized parameters (25G nozzle, 170 kPa, 32 ◦C, 20 mm/s) achieved a significantly improved similarity of 92.35% CAD, demonstrating efficacy. The synergistic combination of simulation and machine learning ultimately enabled the fabrication of complex 3D constructs with a high fidelity of 94.13% CAD similarity, demonstrating the efficacy and potential of this integrated approach for advanced biofabricationes_MX
dc.description.urihttps://www.mdpi.com/2073-4360/17/13/1838es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectcomputational modeles_MX
dc.subject3D printinges_MX
dc.subjectcomplex 3D constructes_MX
dc.subjectgelatin/siloxanees_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleEnhancing 3D Printing of Gelatin/Siloxane-Based Cellular Scaffolds Using a Computational Modeles_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista13es_MX
dcrupi.volumen17es_MX
dcrupi.nopagina1-23es_MX
dc.identifier.doihttps://doi.org/10.3390/ polym17131838es_MX
dc.contributor.coauthorzuñiga, esmeralda
dc.contributor.coauthorCastro Carmona, Javier Servando
dc.contributor.coauthorChapa, Christian
dc.contributor.coauthorMéndez-González, Luis Carlos
dc.contributor.alumno245124es_MX
dc.journal.titlePolymerses_MX
dc.contributor.authorexternoMarcos B., Valenzuela Reyes
dc.contributor.coauthorexternoAlvarez Lopez, R
dc.contributor.coauthorexternoMonreal Romero, Humberto
dcrupi.colaboracionextUniversidad Autonoma de Chihuahua, Mexicoes_MX
dcrupi.colaboracionextThe University of Texas at El Paso, Estados Unidoses_MX
dc.contributor.alumnoprincipal245124es_MX
dcrupi.impactosocialSi, en la aplicacion a futuro para la saludes_MX
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesSaludes_MX
dcrupi.vinculadoproyintNoes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09