Mostrar el registro sencillo del ítem
Advanced Biomaterial Design: Optimizing Porous Titanium with Hydroxyapatite Coating for Improved Joint Prosthesis Performance and Bone Integration
dc.date.accessioned | 2025-09-11T16:49:51Z | |
dc.date.available | 2025-09-11T16:49:51Z | |
dc.date.issued | 2025-06-03 | es_MX |
dc.identifier.uri | https://cathi.uacj.mx/20.500.11961/31520 | |
dc.description.abstract | The success of orthopedic implants critically depends on achieving mechanical and biological compatibility with bone tissue. Traditional titanium implants often suffer from high stiffness, which induces stress shielding, a phenomenon that compromises implant integration and accelerates prosthetic loosening. This study introduces an innovative approach to mitigate these limitations by engineering a porous titanium substrate with a controlled microstructure. Utilizing sodium chloride as a spacer holder, an elution and sintering process was applied at 1250 °C under high vacuum conditions to reduce the material’s elastic modulus. By manipulating NaCl volume fractions (20%, 25%, 30%, and 35%), porous titanium samples were created with elastic moduli between 16.37 and 22.56 GPa, closely matching cortical bone properties (4 to 20 GPa). A hydroxyapatite coating applied via plasma thermal spraying further enhanced osseointegration of the material. Comprehensive characterization through X-ray diffraction, scanning electron microscopy, and compression testing validated the material’s structural integrity. In vitro cytotoxicity assessments using osteoblast cells demonstrated exceptional cell viability exceeding 70%, confirming the material’s biocompatibility. These findings represent a significant advancement in biomaterial design, offering a promising strategy for developing next-generation joint prostheses with superior mechanical and biological adaptation to bone tissue. | es_MX |
dc.description.uri | https://www.mdpi.com/2227-9717/13/6/1768 | es_MX |
dc.language.iso | en | es_MX |
dc.relation.ispartof | Producto de investigación IIT | es_MX |
dc.relation.ispartof | Instituto de Ingeniería y Tecnología | es_MX |
dc.subject | porous titanium; | es_MX |
dc.subject | stress shielding | es_MX |
dc.subject | hydroxyapatite | es_MX |
dc.subject | elastic modulus | es_MX |
dc.subject | osseointegration | es_MX |
dc.subject | biomaterials | es_MX |
dc.subject.other | info:eu-repo/classification/cti/7 | es_MX |
dc.title | Advanced Biomaterial Design: Optimizing Porous Titanium with Hydroxyapatite Coating for Improved Joint Prosthesis Performance and Bone Integration | es_MX |
dc.type | Artículo | es_MX |
dcterms.thumbnail | http://ri.uacj.mx/vufind/thumbnails/rupiiit.png | es_MX |
dcrupi.instituto | Instituto de Ingeniería y Tecnología | es_MX |
dcrupi.cosechable | Si | es_MX |
dcrupi.norevista | 6 | es_MX |
dcrupi.volumen | 13 | es_MX |
dcrupi.nopagina | 1768 | es_MX |
dc.identifier.doi | https://doi.org/10.3390/pr13061768 | es_MX |
dc.contributor.coauthor | Olivas Armendariz, Imelda | |
dc.journal.title | Processes | es_MX |
dc.contributor.authorexterno | Rivera-Vicuña, Katia | |
dc.contributor.coauthorexterno | Tejeda-Ochoa, Armando | |
dc.contributor.coauthorexterno | Castañeda-Balderas, Ruben | |
dc.contributor.coauthorexterno | Herrera-Ramirez, Jose Martin | |
dc.contributor.coauthorexterno | Carreño-Gallardo, Caleb | |
dcrupi.pronaces | Salud | es_MX |