Mostrar el registro sencillo del ítem

dc.contributor.authorMejia, Jose
dc.date.accessioned2025-08-11T16:37:17Z
dc.date.available2025-08-11T16:37:17Z
dc.date.issued2025-08-01es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/31413
dc.description.abstractIn today’s highly competitive business environment, organizations continuously strive to maintain their competitiveness and achieve sustainable profit margins to support long-term growth and development. Accurate demand forecasting has become a critical tool for decision-makers, as it allows better resource allocation, inventory management, and strategic planning. Recurrent deep learning methods, which use gating mechanisms to maintain an internal state aligned with time series data, are among the most widely used approaches to improve forecast accuracy. Despite their success, these models still exhibit significant untapped potential that could be realized by rethinking the design of their gating mechanisms. To address this, we introduce a novel demand forecasting method inspired by Kolmogorov–Arnold networks (KANs), featuring a modified recurrent architecture with a restructured gating mechanism. This innovation leverages KAN principles to enhance the model’s capacity to capture intricate temporal dependencies and adapt to evolving demand patterns. Experimental evaluations demonstrate that the proposed method outperforms state-of-the-art approaches, highlighting its ability to provide more accurate and reliable demand forecasting results.es_MX
dc.description.urihttps://link.springer.com/article/10.1007/s00521-025-11514-wes_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectKANNes_MX
dc.subjectneural networkses_MX
dc.subjectdemandes_MX
dc.subjectforecastinges_MX
dc.titleDemand forecasting using KAN-RNNes_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dc.identifier.doihttps://doi.org/10.1007/s00521-025-11514-wes_MX
dc.contributor.coauthorMederos, Boris
dc.contributor.coauthorAvelar, Liliana
dc.contributor.coauthorDíaz Román, José David
dc.journal.titleNeural Computing and Applicationses_MX
dc.contributor.coauthorexternocruz-mejia, Oliverio
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09