Mostrar el registro sencillo del ítem
A-differentiability over associative algebras
dc.contributor.author | López-González, Elifalet | |
dc.date.accessioned | 2025-07-23T18:10:07Z | |
dc.date.available | 2025-07-23T18:10:07Z | |
dc.date.issued | 2025-05-15 | es_MX |
dc.identifier.uri | https://cathi.uacj.mx/20.500.11961/31280 | |
dc.description.abstract | The unital associative algebra structure 𝔸 on ℝ𝑛 allows for defining elementary functions and functions defined by convergent power series. For these, the usual derivative has a simple form even for higher-order derivatives, which allows us to have the 𝔸-calculus. Thus, we introduce 𝔸-differentiability. Rules for 𝔸-differentiation are obtained: a product rule, left and right quotients, and a chain rule. Convergent power series are 𝔸-differentiable, and their 𝔸-derivatives are the power series defined by their 𝔸-derivatives. Therefore, we use associative algebra structures to calculate the usual derivatives. These calculations are carried out without using partial derivatives, but only by performing operations in the corresponding algebras. For 𝑓(𝑥)=𝑥2, we obtain 𝑑𝑓𝑥(𝑣)=𝑣𝑥+𝑥𝑣, and for 𝑓(𝑥)=𝑥−1, 𝑑𝑓𝑥(𝑣)=−𝑥−1𝑣𝑥−1. Taylor approximations of order k and expansion by the Taylor series are performed. The pre-twisted differentiability for the case of non-commutative algebras is introduced and used to solve families of quadratic ordinary differential equations. | es_MX |
dc.description.uri | https://www.mdpi.com/2227-7390/13/10/1619 | es_MX |
dc.language.iso | en | es_MX |
dc.relation.ispartof | Producto de investigación IIT | es_MX |
dc.relation.ispartof | Instituto de Ingeniería y Tecnología | es_MX |
dc.subject | Associative algebras; Fréchet differentiability; Taylor approximations; Clifford algebras | es_MX |
dc.subject.other | info:eu-repo/classification/cti/1 | es_MX |
dc.title | A-differentiability over associative algebras | es_MX |
dc.type | Artículo | es_MX |
dcterms.thumbnail | http://ri.uacj.mx/vufind/thumbnails/rupiiit.png | es_MX |
dcrupi.instituto | Instituto de Ingeniería y Tecnología | es_MX |
dcrupi.cosechable | Si | es_MX |
dcrupi.norevista | 10 | es_MX |
dcrupi.volumen | 13 | es_MX |
dcrupi.nopagina | 1-21 | es_MX |
dc.identifier.doi | https://doi.org/10.3390/math13101619 | es_MX |
dc.journal.title | Mathematics | es_MX |
dc.contributor.authorexterno | Avila, Julio César | |
dc.contributor.coauthorexterno | Frías-Armenta, Martín Eduardo | |
dcrupi.colaboracionext | No | es_MX |
dcrupi.impactosocial | Contribuye a la educación y cultura en el estado de Chihuahua | es_MX |
dcrupi.vinculadoproyext | No | es_MX |
dcrupi.pronaces | Cultura | es_MX |
dcrupi.vinculadoproyint | No | es_MX |