Mostrar el registro sencillo del ítem

dc.contributor.authorMartinez-Garcia, Edgar
dc.date.accessioned2025-01-09T19:45:30Z
dc.date.available2025-01-09T19:45:30Z
dc.date.issued2024-11-18es_MX
dc.identifier.issn2184-2809
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/30385
dc.description.abstractComputer simulations are growing in popularity in robotics research due to their near-zero cost of error and lower labor intensity. One of necessary components of a simulation, in addition to a robot model, is a model of a world in which the robot operates. While it is always possible to construct a world model manually, a demand for automatic tools that generate multiple testing environments with particular user-defined features grows together with integration of data hungry machine learning techniques into robotic algorithms. This article presents a next generation of LIRS-RSEGen tool for constructing virtual random step environments (RSE). The new tool can simultaneously generate multiple RSE models with user-defined specific features that are declared via an intuitive graphical user interface. The resulting models simulate an urban search and rescue environment and can be used with robot models for developing and testing software for localization, mapping, navigation and locomotion, and are applicable for machine learning due to their relatively low impact on performance and random elements in RSE generation. The constructed worlds’ performance was successfully tested with robot models in the Webots and Gazebo simulators.es_MX
dc.description.urihttps://www.scitepress.org/Link.aspx?doi=10.5220/0013068600003822es_MX
dc.language.isoenes_MX
dc.publisherSciTePresses_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectRoboticses_MX
dc.subjectMobile Roboticses_MX
dc.subjectUSARes_MX
dc.subjectModelinges_MX
dc.subjectGazeboes_MX
dc.subjectWebotses_MX
dc.subjectMachine Learninges_MX
dc.subjectTooles_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleA Tool for Mass Generation of Random Step Environment Models with User-Defined Landscape Featureses_MX
dc.typeMemoria in extensoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisPortugales_MX
dcrupi.tipoeventoCongresoes_MX
dcrupi.evento21st International Conference on Informatics in Control, Automation and Robotics (ICINCO 2024)es_MX
dcrupi.estadoPortoes_MX
dc.contributor.authorexternoGabdrahmanov, Ruslan
dc.contributor.coauthorexternoTsoy, Tatyana
dc.contributor.coauthorexternoMagid, Evgeni
dcrupi.colaboracionextRusiaes_MX
dcrupi.vinculadoproyextKazan Federal University Strategic Academic Leadership Program ("PRIORITY-2030")es_MX
dcrupi.pronacesEducaciónes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09