Mostrar el registro sencillo del ítem

dc.date.accessioned2025-01-08T20:06:21Z
dc.date.available2025-01-08T20:06:21Z
dc.date.issued2024-11-14es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/30222
dc.description.abstractMachine learning for financial risk prediction has garnered substantial interest in recent decades. However, the class imbalance problem and the dilemma of accuracy gain by loss interpretability have yet to be widely studied. Symbolic classifiers have emerged as a promising solution for forecasting banking failures and estimating creditworthiness as it addresses class imbalance while maintaining both accuracy and interpretability. This paper aims to evaluate the effectiveness of REMED, a symbolic classifier, in the context of financial risk management, and focuses on its ability to handle class imbalance and provide interpretable decision rules. Through empirical analysis of a real-world imbalanced financial dataset from the Federal Deposit Insurance Corporation, we demonstrate that REMED effectively handles class imbalance, improving performance accuracy metrics while ensuring interpretability through a concise and easily understandable rule system. A comparative analysis is conducted against two well-known rule-generating approaches, J48 and JRip. The findings suggest that, with further development and validation, REMED can be implemented as a competitive approach to improve predictive accuracy on imbalanced financial datasets without compromising model interpretabilityes_MX
dc.description.urihttps://www.nature.com/articles/s41599-024-04047-5es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectfinancial risk predictiones_MX
dc.subjectsymbolic classifierses_MX
dc.subjectclass imbalancees_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleEnhancing financial risk prediction with symbolic classifiers: addressing class imbalance and the accuracy–interpretability trade–offes_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.volumen11es_MX
dcrupi.nopagina1-11es_MX
dc.identifier.doihttps://doi.org/10.1057/s41599-024-04047-5es_MX
dc.contributor.coauthorGarcía, Vicente
dc.journal.titleHumanities and Social Sciences Communicationses_MX
dc.contributor.authorexternoMena, Luis
dc.contributor.coauthorexternoFelix, Vanessa
dc.contributor.coauthorexternoOstos, Rodolfo
dc.contributor.coauthorexternoMartínez-Peláez, Rafael
dc.contributor.coauthorexternoOchoa-Brust, Alberto
dc.contributor.coauthorexternoVelarde-Alvarado, Pablo
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesNingunoes_MX
dcrupi.vinculadoproyintNoes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09