Mostrar el registro sencillo del ítem

dc.contributor.authorRivera Zarate, Gilberto
dc.date.accessioned2024-12-13T16:58:12Z
dc.date.available2024-12-13T16:58:12Z
dc.date.issued2024-09-16es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/29578
dc.description.abstractOne of the main challenges in applying preference-based approaches to many-objective optimization problems is that decision makers (DMs) initially have only a vague notion of the solution they want and can obtain. In this paper, we propose an interactive approach that aids DMs in articulating a preference model in a progressive way. The quality of a solution is determined in terms of its “preference closeness” to an aspiration point, which is a subjective concept that can be outlined by the DM. Our proposal is based on compensatory fuzzy logic, which allows for the construction of predicates that are expressed in language that is close to natural. One main advantage is that the model can be optimized via metaheuristics, and we utilize an ant colony optimization algorithm for this. Our model complies with the principles of hybrid augmented intelligence, not only because the algorithm is enriched with knowledge from the DM, but also because the DM also learns the concept of “preference closeness” throughout the process. The proposed model is validated on benchmarks with five and 10 objective functions, and is compared with two state-of-the-art algorithms. Our approach allows for better convergence to the best compromise solutions. The advantages of our approach are supported by statistical tests of the results.es_MX
dc.description.urihttps://www.sciencedirect.com/science/article/abs/pii/S0950705124011584?via%3Dihubes_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectMany-objective optimizationes_MX
dc.subjectInteractive approaches_MX
dc.subjectFuzzy optimizationes_MX
dc.subjectProgressive preference articulationes_MX
dc.subjectSwarm intelligencees_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleAiding decision makers in articulating a preference closeness model through compensatory fuzzy logic for many-objective optimization problemses_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.volumen304es_MX
dcrupi.nopagina1-15es_MX
dc.identifier.doihttps://doi.org/10.1016/j.knosys.2024.112524es_MX
dc.journal.titleKnowledge-Based Systemses_MX
dc.contributor.coauthorexternoEduardo, Fernández
dc.contributor.coauthorexternoLaura, Cruz Reyes
dc.contributor.coauthorexternoRafael Alejandro, Espin Andrade
dc.contributor.coauthorexternoClaudia G., Gómez Santillán
dc.contributor.coauthorexternoNelson, Rangel Valdez
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09