Mostrar el registro sencillo del ítem

dc.contributor.authorSánchez Solís, Julia Patricia
dc.date.accessioned2024-12-13T16:30:33Z
dc.date.available2024-12-13T16:30:33Z
dc.date.issued2024-09-30es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/29572
dc.description.abstractTechnological innovations in the healthcare field have allowed medical images to be widely used in the diagnostic care of patients since medical personnel can analyze different body organs to identify any disease through these images. The analysis of these images is entirely within the domain of the specialist, who, based on his/her experience, interprets them and discloses the results to the patient. This paper presents the architecture of a framework that seeks to support the decision-making of medical personnel regarding the diagnosis of diseases. The framework integrates custom tags in the metadata of Digital Imaging and Communications in Medicine(DICOM) files. The tags contain the classification results of supervised learning models. Different convolutional neural network (CNN) architectures trained on medical images were developed using transfer learning and existing pre-trained CNNs to evaluate the framework’s performance. A web viewer was also developed to show medical personnel the custom tags. Due to the characteristics of the framework, its use could be extended to patients so that they could obtain a preliminary diagnosis and go to the doctor as soon as possible, which could be crucial.es_MX
dc.description.urihttps://cys.cic.ipn.mx/ojs/index.php/CyS/article/view/5186es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectDICOMes_MX
dc.subjectdeep learninges_MX
dc.subjectconvolutional neural networkses_MX
dc.subjectML.NETes_MX
dc.subjectLung Canceres_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleFramework to Support Radiologist Personnel in the Diagnosis of Diseases in Medical Images Using Deep Learning and Personalized DICOM Tagses_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista3es_MX
dcrupi.volumen28es_MX
dcrupi.nopagina1321-1348es_MX
dc.identifier.doi10.13053/CyS-28-3-5186es_MX
dc.contributor.coauthorRivera Zarate, Gilberto
dc.contributor.coauthorFlorencia, Rogelio
dc.journal.titleComputación y Sistemases_MX
dc.contributor.alumnoprincipal251385es_MX
dcrupi.impactosocialNoes_MX
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesSaludes_MX
dcrupi.vinculadoproyintNoes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09