Mostrar el registro sencillo del ítem

dc.date.accessioned2024-12-10T19:59:06Z
dc.date.available2024-12-10T19:59:06Z
dc.date.issued2024-10-26es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/29462
dc.description.abstractIn the field of structural damage detection through vibration measurements, most existing methods demand extensive data collection, including vibration readings at multiple levels, strain data, temperature measurements, and numerous vibration modes. These requirements result in high costs and complex instrumentation processes. Additionally, many approaches fail to account for model uncertainties, leading to significant discrepancies between the actual structure and its numerical reference model, thus compromising the accuracy of damage identification. This study introduces an innovative computational method aimed at minimizing data requirements, reducing instrumentation costs, and functioning with fewer vibration modes. By utilizing information from a single vibration sensor and at least three vibration modes, the method avoids the need for highermode excitation, which typically demands specialized equipment. The approach also incorporates model uncertainties related to geometry and mass distribution, improving the accuracy of damage detection. The computational method was validated on a steel frame structure under various damage conditions, categorized as single or multiple damage. The results indicate up to 100% accuracy in locating damage and up to 80% accuracy in estimating its severity. These findings demonstrate the method’s potential for detecting structural damage with limited data and at a significantly lower cost compared to conventional techniques.es_MX
dc.description.urihttps://www.mdpi.com/2227-7390/12/21/3362es_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectStructural Damage Detectiones_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleEfficient Structural Damage Detection with Minimal Input Data: Leveraging Fewer Sensors and Addressing Model Uncertaintieses_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista21es_MX
dcrupi.volumen12es_MX
dcrupi.nopagina1-23es_MX
dc.identifier.doihttps://doi.org/10.3390/math12213362es_MX
dc.contributor.coauthorEstrada Barbosa, Quirino
dc.journal.titleMathematicses_MX
dc.contributor.authorexternoAlegría, Fredi
dc.contributor.coauthorexternoMartínez, Eladio
dc.contributor.coauthorexternoCortés-García, Claudia
dc.contributor.coauthorexternoBlanco-Ortega, Andrés
dc.contributor.coauthorexternoPonce-Silva, Mario
dcrupi.impactosocialSi, seguridad humanaes_MX
dcrupi.pronacesSeguridad humanaes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09