Mostrar el registro sencillo del ítem

dc.contributor.authorzuñiga, esmeralda
dc.date.accessioned2024-11-29T16:56:56Z
dc.date.available2024-11-29T16:56:56Z
dc.date.issued2024-09-05es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/29161
dc.description.abstractBACKGROUND: Tissue engineering seeks to improve, maintain, or replace the biological functions of damaged organs or tissues with biological substitutes such as the development of scaffolds. In the case of bone tissue, they must have excellent mechanical properties like native bone. OBJECTIVE: In this work, three geometric models were designed for scaffolds with different structure lattices and porosity that could be biomechanically suitable and support cell growth for trabecular bone replacement applications in tissue engineering and regenerative medicine to the proximal femur area. METHODS: Geometries were designed using computer-aided design (CAD) software and evaluated using finite element analysis in compression tests. Three loads were considered according to the daily activity: 1177 N for slow walking, 2060 N for fast walking, and 245.25 N for a person in a bipedal position. All these loads for an adult weight of 75 kg. For each of them, three biomaterials were assigned: two polymers (poly-glycolic acid (PGA) and poly-lactic acid (PLA)) and one mineral (hydroxyapatite (HA)). 54 tests were performed: 27 for each of the tests. RESULTS: The results showed Young’s modulus (E) between 1 and 4 GPa. CONCLUSION: If the resultant E is in the range of 0.1 to 5 GPa, the biomaterial is considered an appropriate alternative for the trabecular bone which is the main component of the proximal bone. However, for the models applied in this study, the best option is the poly-lactic acid which will allow absorbing the acting loadses_MX
dc.description.urihttps://content.iospress.com/articles/bio-medical-materials-and-engineering/bme230049es_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectScaffold, lattice, femur, tissue engineering, biomechanicales_MX
dc.subject.otherinfo:eu-repo/classification/cti/3es_MX
dc.titleDESING AND SIMULATION OF SCAFFOLDS WITH LATTICE MICROSTRUCTURES FOR BIOPRINTING BONE TISSUEes_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista5es_MX
dcrupi.volumen35es_MX
dcrupi.nopagina415-423es_MX
dc.identifier.doi10.3233/BME-230049es_MX
dc.journal.titleBio-Medical Materials and Engineeringes_MX
dc.contributor.coauthorexternoRAMIREZ-FERNANDEZ, JUAN ODIN
dcrupi.impactosocialSIes_MX
dcrupi.vinculadoproyextNOes_MX
dcrupi.pronacesSaludes_MX
dcrupi.vinculadoproyintNOes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09