Mostrar el registro sencillo del ítem

dc.contributor.authorEnriquez Aguilera, Francisco Javier
dc.date.accessioned2024-11-29T16:27:42Z
dc.date.available2024-11-29T16:27:42Z
dc.date.issued2024-06-17es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/29156
dc.description.abstractParking occupancy is difficult in most modern cities because of increases in the accessibility and use of motor vehicles, and users generally take several minutes or even hours to find a place to park. In this work, we propose a smart parking prediction model in order to help users locate in advance the availability of parking near the places they plan to visit. For this it is proposed a fog computing architecture that integrates a machine learning algorithm based on AdaBoost to predict parking places hours or days in advance. Additionally, a user interface was developed, which involves the collection of user inputs through a mobile application where the user is prompted to enter the destination location and the prediction time interval. Through extensive experimentation using real-world parking flow data, our proposed algorithm demonstrated an improved level of accuracy compared with alternative prediction methods. Moreover, a simulation was conducted to evaluate the system’s latency when using cloud computing versus our hybrid approach combining both fog and cloud computing. The results showed that employing the fog module in conjunction with cloud computing significantly reduced response delay in comparison with using cloud computing alone.es_MX
dc.description.urihttps://www.mdpi.com/2571-5577/7/3/52es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectpredictiones_MX
dc.subjectparking occupancyes_MX
dc.subjectfog computinges_MX
dc.subjectmodified adaboostes_MX
dc.subjectTukey’s biweightes_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleSmart Parking: Enhancing Urban Mobility with Fog Computing and Machine Learning-Based Parking Occupancy Predictiones_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista7es_MX
dcrupi.volumen3es_MX
dcrupi.nopagina1-17es_MX
dc.identifier.doihttps://doi.org/10.3390/asi7030052es_MX
dc.contributor.coauthorBravo Martinez, Gabriel
dc.contributor.coauthorMejia, Jose
dc.journal.titleApplied System Innovationes_MX
dc.contributor.coauthorexternoCruz, Oliverio
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09