Mostrar el registro sencillo del ítem

dc.contributor.authorNandayapa, Manuel
dc.date.accessioned2024-11-29T16:19:37Z
dc.date.available2024-11-29T16:19:37Z
dc.date.issued2024-09-10es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/29153
dc.description.abstractForm deviation generated during the milling profile process challenges the precision and functionality of industrial fixtures and product manufacturing across various sectors. Inspecting contour profile quality relies on commonly employed contact methods for measuring form deviation. However, the methods employed frequently face limitations that can impact the reliability and overall accuracy of the inspection process. This paper introduces a novel approach, the novel intelligent inspection method (NIIM), developed to accurately inspect and categorize contour profiles in machined parts manufactured through the milling process by computer numerical control (CNC) machines. The NIIM integrates a calibration piece, a vision system (𝑅𝐴𝑀-𝑆𝑡𝑎𝑟𝑙𝑖𝑡𝑒𝑇𝑀), and machine learning techniques to analyze the line profile and classify the quality of contour profile deformation generated during CNC milling. The calibration piece is specifically designed to identify form deviations in the contour profile during the milling process. The 𝑅𝐴𝑀-𝑆𝑡𝑎𝑟𝑙𝑖𝑡𝑒𝑇𝑀 vision system captures contour profile images corresponding to curves, lines, and slopes. An algorithm generates a profile signature, extracting Fourier descriptor features from the contour profile to analyze form deviations compared to an image reference. A feed-forward neural network is employed to classify contour profiles based on quality properties. Experimental evaluations involving 60 machined calibration pieces, resulting in 356 images for training and testing, demonstrate the accuracy and computational efficiency of the proposed NIIM for profile line tolerance inspection. The results demonstrate that the NIIM offers 96.99% accuracy, low computational requirements, 100% inspection capability, and valuable information to improve machining parameters, as well as quality classification.es_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectcontour profilees_MX
dc.subjectinspectiones_MX
dc.subjectFourier descriptorses_MX
dc.subjectmachine learninges_MX
dc.subjectmachine visiones_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleFourier Features and Machine Learning for Contour Profile Inspection in CNC Milling Parts: A Novel Intelligent Inspection Method (NIIM)es_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista18es_MX
dcrupi.volumen14es_MX
dcrupi.nopagina10-30es_MX
dc.identifier.doihttps://doi.org/10.3390/app14188144es_MX
dc.contributor.coauthorVergara Villegas, Osslan Osiris
dc.contributor.coauthorReynoso Jardón, elva
dc.contributor.alumno206585es_MX
dc.journal.titleApplied Scienceses_MX
dc.contributor.coauthorexternoMeraz Méndez, Manuel
dc.contributor.coauthorexternoRamírez Quintana, Juan A.
dcrupi.colaboracionextnoes_MX
dcrupi.impactosocialSi, contribuye a la parte de la industriaes_MX
dcrupi.vinculadoproyextnoes_MX
dcrupi.pronacesSeguridad humanaes_MX
dcrupi.vinculadoproyintnoes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09