Mostrar el registro sencillo del ítem

dc.contributor.authorRiosvelasco, Georgina
dc.date.accessioned2024-08-01T18:16:33Z
dc.date.available2024-08-01T18:16:33Z
dc.date.issued2024-05-23es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/28636
dc.description.abstractAs enterprises look forward to new market share and supply chain opportunities, innovative strategies and sustainable manufacturing play important roles for micro-, small, and mid-sized enterprises worldwide. Sustainable manufacturing is one of the practices aimed towards deploying green energy initiatives to ease climate change, presenting three main pillars—economic, social, and environmental. The issue of how to reach sustainability goals within the sustainable manufacturing of pillars is a less-researched area. This paper’s main purpose and novelty is two-fold. First, it aims to provide a hierarchy of the green energy indicators and their measurements through a multicriteria decision-making point of view to implement them as an alliance strategy towards sustainable manufacturing. Moreover, we aim to provide researchers and practitioners with a forecasting method to re-prioritize green energy indicators through a linearity factor model. The CODAS–Hamming– Mahalanobis method is used to obtain preference scores and rankings from a 50-item list. The resulting top 10 list shows that enterprises defined nine items within the economic pillar as more important and one item on the environmental pillar; items from the social pillar were less important. The implication for MSMEs within the manufacturing sector represents an opportunity to work with decision makers to deploy specific initiatives towards sustainable manufacturing, focused on profit and welfare while taking care of natural resources. In addition, we propose a continuous predictive analysis method, the linearity factor model, as a tool for new enterprises to seek a green energy hierarchy according to their individual needs. The resulting hierarchy using the predictive analysis model presented changes in the items’ order, but it remained within the same two sustainable manufacturing pillars: economic and environmental.es_MX
dc.description.urihttps://www.mdpi.com/2227-9717/12/6/1070es_MX
dc.language.isospaes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectMahalanobis distancees_MX
dc.subjectgreen energy supply chaines_MX
dc.subjectMCDMes_MX
dc.subjectSustainable Manufacturinges_MX
dc.subjectPredictive analysis modeles_MX
dc.subject.otherinfo:eu-repo/classification/cti/5es_MX
dc.titleCODAS–Hamming–Mahalanobis Method for Hierarchizing Green Energy Indicators and a Linearity Factor for Relevant Factors’ Prediction through Enterprises’ Opinionses_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista6es_MX
dcrupi.volumen12es_MX
dcrupi.nopagina1-22es_MX
dc.identifier.doihttps://doi.org/10.3390/pr12061070es_MX
dc.contributor.coauthorPerez Olguin, Ivan Juan Carlos
dc.contributor.coauthorNoriega, Salvador
dc.contributor.coauthorPérez Domínguez, Luis
dc.contributor.coauthorMéndez-González, Luis Carlos
dc.contributor.coauthorRodriguez Picon, Luis Alberto
dc.journal.titleProcesseses_MX
dcrupi.impactosocialIdentifica factores que las empresas pueden utilizar para desarrollar estrategias hacia la energía verdees_MX
dcrupi.pronacesEnergía y Cambio Climáticoes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09