Mostrar el registro sencillo del ítem

dc.contributor.authorRamos Murillo, Manuel Antonio
dc.date.accessioned2024-08-01T15:28:25Z
dc.date.available2024-08-01T15:28:25Z
dc.date.issued2024-03-26es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/28625
dc.description.abstractWe present the fabrication of a MoS2−xSex thin film from a co-sputtering process using MoS2 and MoSe2 commercial targets with 99.9% purity. The sputtering of the MoS2 and MoSe2 was carried out using a straight and low-cost magnetron radio frequency sputtering recipe to achieve a MoS2−xSex phase with x = 1 and sharp interface formation as confirmed by Raman spectroscopy, time-of-flight secondary ion mass spectroscopy, and cross-sectional scanning electron microscopy. The sulfur and selenium atoms prefer to distribute randomly at the octahedral geometry of molybdenum inside the MoS2−xSex thin film, indicated by a blue shift in the A1g and E1g vibrational modes at 355 cm−1 and 255 cm−1, respectively. This work is complemented by computing the thermodynamic stability of a MoS2−xSex phase whereby density functional theory up to a maximum selenium concentration of 33.33 at.% in both a Janus-like and random distribution. Although the Janus-like and the random structures are in the same metastable state, the Janus-like structure is hindered by an energy barrier below selenium concentrations of 8 at.%. This research highlights the potential of transition metal dichalcogenides in mixed phases and the need for further exploration employing low-energy, large-scale methods to improve the materials’ fabrication and target latent applications of such structures.es_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectMoS2, Sputtering, Materials, SIMS, Dataes_MX
dc.subject.otherinfo:eu-repo/classification/cti/1es_MX
dc.titleMoSSe metastable phase as thin film and predicted thermodynamic stability by computational methodses_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista14es_MX
dcrupi.nopagina7104-7111es_MX
dc.identifier.doihttps://doi.org/10.1038/s41598-024-57243-3es_MX
dc.journal.titleScientific Reportses_MX
dc.contributor.coauthorexternoLópez-Galán, Oscar Alberto
dc.contributor.coauthorexternoNogan, John
dc.contributor.coauthorexternoHeilmaier, Martin
dc.contributor.coauthorexternoBoll, Torben
dc.contributor.coauthorexternoWelle, Alexander
dc.contributor.coauthorexternoChassaing, Delphine
dcrupi.colaboracionextAlemaniaes_MX
dcrupi.colaboracionextEstados Unidoses_MX
dcrupi.impactosocialSies_MX
dcrupi.vinculadoproyextSies_MX
dcrupi.pronacesEnergía y Cambio Climáticoes_MX
dcrupi.vinculadoproyintSies_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09