Mostrar el registro sencillo del ítem

dc.date.accessioned2024-08-01T15:18:07Z
dc.date.available2024-08-01T15:18:07Z
dc.date.issued2024-01-28es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/28621
dc.description.abstractInvestors make decisions about buying and selling a financial asset based on available information. The traditional approach in Deep Learning when trying to predict the behavior of an asset is to take a price history, train a model, and forecast one single price in the near future. This is called the frequentist perspective. Uncertainty Quantification is an alternative in which models manage a probability distribution for prediction. It provides investors with more information than the traditional frequentist way, so they can consider the risk of making or not making a certain decision. We systematically reviewed the existing literature on Uncertainty Quantification methods in Deep Learning to predict the behavior of financial assets, such as foreign exchange, stock market, cryptocurrencies and others. The article discusses types of model, categories of financial assets, prediction characteristics and types of uncertainty. We found that, in general terms, references focus on price accuracy as a metric, although other metrics, such as trend accuracy, might be more appropriate. Very few authors analyze both epistemic and aleatoric uncertainty, and none analyze in depth how to decouple them. The time period analyzed includes the years 2001 to 2022es_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/2.5/mx/*
dc.subjectDeep Learninges_MX
dc.subjectTime Serieses_MX
dc.subjectUncertainty quantificationes_MX
dc.subjectFinancial assetses_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleA survey on uncertainty quantification in deep learning for financial time series predictiones_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.volumen576es_MX
dcrupi.nopagina1-22es_MX
dc.identifier.doihttps://doi.org/10.1016/j.neucom.2024.127339es_MX
dc.contributor.coauthorGarcía, Vicente
dc.journal.titleNeurocomputinges_MX
dc.contributor.authorexternoBlanco, Txus
dc.contributor.coauthorexternoSánchez, José Salvador
dcrupi.colaboracionextEspañaes_MX
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09