Mostrar el registro sencillo del ítem
Identification of Pneumonia with X-ray Images Using Deep Transfer Learning
dc.contributor.author | Díaz Román, José David | |
dc.date.accessioned | 2024-01-15T17:31:03Z | |
dc.date.available | 2024-01-15T17:31:03Z | |
dc.date.issued | 2023-10-26 | es_MX |
dc.identifier.isbn | 978-3-031-46932-9 | |
dc.identifier.isbn | 978-3-031-46933-6 | |
dc.identifier.uri | http://cathi.uacj.mx/20.500.11961/27737 | |
dc.description.abstract | Radiology plays an essential role in the identification of pathologies; however, image interpretation and the guarantee of accurate diagnoses continue to represent a challenge that involves expert radiologists. This study proposes a model to identify pneumonia in chest X-rays using the deep transfer learning technique, where five pre-trained network architectures and a classifier are tested. The images used in this work are categorized into bacterial pneumonia, viral pneumonia, and normal cases. The pre-trained models used include DenseNet201, MobileNet, VGG16, VGG19 and ResNet50. A support vector machine is used as a classifier. Results show that the ResNet50 model performs best in binary classification (pneumonia vs. non-pneumonia) with 98.1% accuracy and 98.7 F1-score. For multiclassification, VGG19 performs best with an accuracy of 84.7% and an average F1-score of 81.1%. The methodology employed proved to be competent and outstanding when compared to other studies in the state of the art. | es_MX |
dc.description.uri | https://link.springer.com/chapter/10.1007/978-3-031-46933-6_4 | es_MX |
dc.language.iso | spa | es_MX |
dc.publisher | Springer | es_MX |
dc.relation.ispartof | Producto de investigación IIT | es_MX |
dc.relation.ispartof | Instituto de Ingeniería y Tecnología | es_MX |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 México | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/mx/ | * |
dc.subject | Pneumonia | es_MX |
dc.subject | X-ray images | es_MX |
dc.subject | Deep Transfer Learning | es_MX |
dc.subject | Support Vector Machine | es_MX |
dc.subject.other | info:eu-repo/classification/cti/7 | es_MX |
dc.title | Identification of Pneumonia with X-ray Images Using Deep Transfer Learning | es_MX |
dc.type | Memoria in extenso | es_MX |
dcterms.thumbnail | http://ri.uacj.mx/vufind/thumbnails/rupiiit.png | es_MX |
dcrupi.instituto | Instituto de Ingeniería y Tecnología | es_MX |
dcrupi.cosechable | Si | es_MX |
dcrupi.subtipo | Investigación | es_MX |
dcrupi.alcance | Internacional | es_MX |
dcrupi.pais | México | es_MX |
dc.contributor.coauthor | Mederos, Boris | |
dc.contributor.coauthor | Gordillo Castillo, Nelly | |
dc.contributor.coauthor | Cota Ruiz, Juan De Dios | |
dc.contributor.coauthor | Mejia, Jose | |
dc.contributor.alumno | 179315 | es_MX |
dcrupi.tipoevento | Congreso | es_MX |
dcrupi.evento | XLVI Mexican Conference on Biomedical Engineering | es_MX |
dcrupi.estado | Tabasco | es_MX |
dcrupi.colaboracionext | No | es_MX |
dcrupi.impactosocial | No | es_MX |
dcrupi.vinculadoproyext | No | es_MX |
dcrupi.pronaces | Salud | es_MX |
dcrupi.vinculadoproyint | No | es_MX |
Archivos en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Memoria en extenso [277]