Mostrar el registro sencillo del ítem

dc.contributor.authorDíaz Román, José David
dc.date.accessioned2024-01-15T17:31:03Z
dc.date.available2024-01-15T17:31:03Z
dc.date.issued2023-10-26es_MX
dc.identifier.isbn978-3-031-46932-9
dc.identifier.isbn978-3-031-46933-6
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/27737
dc.description.abstractRadiology plays an essential role in the identification of pathologies; however, image interpretation and the guarantee of accurate diagnoses continue to represent a challenge that involves expert radiologists. This study proposes a model to identify pneumonia in chest X-rays using the deep transfer learning technique, where five pre-trained network architectures and a classifier are tested. The images used in this work are categorized into bacterial pneumonia, viral pneumonia, and normal cases. The pre-trained models used include DenseNet201, MobileNet, VGG16, VGG19 and ResNet50. A support vector machine is used as a classifier. Results show that the ResNet50 model performs best in binary classification (pneumonia vs. non-pneumonia) with 98.1% accuracy and 98.7 F1-score. For multiclassification, VGG19 performs best with an accuracy of 84.7% and an average F1-score of 81.1%. The methodology employed proved to be competent and outstanding when compared to other studies in the state of the art.es_MX
dc.description.urihttps://link.springer.com/chapter/10.1007/978-3-031-46933-6_4es_MX
dc.language.isospaes_MX
dc.publisherSpringeres_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectPneumoniaes_MX
dc.subjectX-ray imageses_MX
dc.subjectDeep Transfer Learninges_MX
dc.subjectSupport Vector Machinees_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleIdentification of Pneumonia with X-ray Images Using Deep Transfer Learninges_MX
dc.typeMemoria in extensoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisMéxicoes_MX
dc.contributor.coauthorMederos, Boris
dc.contributor.coauthorGordillo Castillo, Nelly
dc.contributor.coauthorCota Ruiz, Juan De Dios
dc.contributor.coauthorMejia, Jose
dc.contributor.alumno179315es_MX
dcrupi.tipoeventoCongresoes_MX
dcrupi.eventoXLVI Mexican Conference on Biomedical Engineeringes_MX
dcrupi.estadoTabascoes_MX
dcrupi.colaboracionextNoes_MX
dcrupi.impactosocialNoes_MX
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesSaludes_MX
dcrupi.vinculadoproyintNoes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09