Comparison of ROS Local Planners for a Holonomic Robot in Gazebo Simulator
Resumen
A safe robot navigation in a dynamic environment is an essential part of an autonomous exploration path planning. A path planning part of a navigation involves global and local planners. While a global planner finds an optimal path with a prior knowledge of an environment and static obstacles, a local planner recalculates the path to avoid dynamic obstacles. The main goal of a local planning is adjusting an initial plan produced by a global planner in an online fashion. It is a crucial step to ensure a robot operation in dynamic environments because in real world scenarios an environment usually contains people and thus, a dynamic obstacles avoidance must respond quickly and recalculate an actual route. Holonomic robotic platforms are robotic vehicles that use omni-wheels to move in any direction, at any angle, without an additional rotation. These robotic platforms are ideal for working zones with a limited space access. This paper provides a comparison of ROS local planners that support omni-wheel mobile robots: Trajectory Rollout, DWA, EBand, and TEB. The algorithms were compared using a path length, a travelling time and a number of obstacle collisions. Gazebo simulator was used for modeling virtual scenes with dynamic obstacles.
Colecciones
- Memoria en extenso [277]