Mostrar el registro sencillo del ítem

dc.contributor.authorMejia, Jose
dc.date.accessioned2023-11-09T20:34:15Z
dc.date.available2023-11-09T20:34:15Z
dc.date.issued2023-06-02es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/26152
dc.description.abstractThe adaptive filtering theory has been extensively developed, and most of the proposed algorithms work under the assumption of Euclidean space. However, in many applications, the data to be processed comes from a non-linear manifold. In this article, we propose an alternative adaptive filter that works on a manifold, thus generalizing the filtering task to non-Euclidean spaces. To this end, we generalized the least-mean-squared algorithm to work on a manifold using an exponential map. Our experiments showed that the proposed method outperforms other state-of-the-art algorithms in several filtering tasks.es_MX
dc.description.urihttps://www.nature.com/articles/s41598-023-36127-yes_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleAdaptive filter with Riemannian manifold constraintes_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dc.contributor.coauthorMederos, Boris
dc.contributor.coauthorGordillo Castillo, Nelly
dc.contributor.coauthorOrtega Maynez, Leticia
dc.journal.titleScientific Reportses_MX
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09