Mostrar el registro sencillo del ítem

dc.date.accessioned2023-11-09T16:23:34Z
dc.date.available2023-11-09T16:23:34Z
dc.date.issued2023-06-09es_MX
dc.identifier.issn0302-9743
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/26124
dc.description.abstractMicrocalcifications clusters (MCCs) are relevant breast cancer indirect evidence and early detection can prevent death. In this paper, we carry out a comparison of the deep learning architectures (DL) InceptionV3, DenseNet121, ResNet50, VGG-16, MobileNet V2, LeNet-5 and AlexNet in classification of MCCs in digital mammograms, with the aim to select the best configuration and building blocks that yield a reduced number of parameters.We used the INbreast database to extract patches of size 144×144 pixels corresponding to 1 cm2. The networks were implemented and trained using four independent configurations that consisted of: training each architecture without any extra layer, by adding, after each convolutional and fully connected layer, a Batch Normalization layer, an L2 regularization layer or a Dropout layer, respectively. The best overall accuracy was yielded by the MobileNetV2 with Dropout configuration. The network is built of residual blocks, depth separable convolutional blocks and 1×1 convolutional layers this allows a reduced number of parameters while yielding an accuracy of 0.99841. The comparison highlights the differences and similarities of the DL networks necessary to make the best decision possible to design and implement more optimal networks to classify MCCs. Furthermore, it demonstrates that for the classification of these lesions, the shallow architectures built with certain building blocks and trained with the right configuration, give similar results to their deeper and more complex counterparts.es_MX
dc.description.urihttps://link.springer.com/chapter/10.1007/978-3-031-33783-3_22es_MX
dc.language.isoen_USes_MX
dc.publisherSpringeres_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectMicrocalcifications clusters detectiones_MX
dc.subjectConvolutional neural networkes_MX
dc.subjectDeep learninges_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleComparison of Deep Learning Architectures in Classification of Microcalcifications Clusters in Digital Mammogramses_MX
dc.typeMemoria in extensoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisMexicoes_MX
dc.contributor.coauthorOchoa Domínguez, Humberto
dc.contributor.coauthorVergara Villegas, Osslan Osiris
dc.contributor.coauthorCruz Sanchez, Vianey Guadalupe
dc.contributor.alumno216618es_MX
dcrupi.tipoeventoCongresoes_MX
dcrupi.eventoMexican Conference on Pattern Recognition (MCPR)es_MX
dcrupi.estadoChihuahuaes_MX
dc.contributor.authorexternoLuna Lozoya, Ricardo Salvador
dc.contributor.coauthorexternoSossa, Juan Humberto
dcrupi.impactosocialSies_MX
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesSaludes_MX
dcrupi.vinculadoproyintNoes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09