Mostrar el registro sencillo del ítem

dc.date.accessioned2023-08-10T15:02:39Z
dc.date.available2023-08-10T15:02:39Z
dc.date.issued2023-05-05es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/25816
dc.description.abstractPositron emission tomography (PET) has been widely used in nuclear medicine to diagnose cancer. PET images suffer from degradation because of the scanner’s physical limitations, the radiotracer’s reduced dose, and the acquisition time. In this work, we propose a residual three-dimensional (3D) and con- volutional neural network (CNN) to enhance sinograms acquired from a small-animal PET scanner. The network comprises three convolutional layers created with 3D filters of sizes 9, 5, and 5, respectively. For training, we extracted 15250 3D patches from low- and high-count sinograms to build the low- and high-resolution pairs. After training and prediction, the image was reconstructed from the enhanced sino- gram using the ordered subset expectation maximization (OSEM) algorithm. The results revealed that the proposed network improves the spillover ratio by up to 4.5% and the uniformity by 55% compared to the U-Net. The NEMA phantom data were obtained in a simulation environment. The network was tested on acquired real data from a mouse. The reconstructed images and the profiles of maximum intensity projection show that the proposed method visually yields sharper images.es_MX
dc.description.urihttps://www.sciencedirect.com/science/article/abs/pii/S0167865523001320es_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectPositron emission tomographyes_MX
dc.subjectConvolutional neural networkes_MX
dc.subjectImage enhancementes_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleResidual 3D convolutional neural network to enhance sinograms from small-animal positron emission tomography imageses_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.volumen172es_MX
dcrupi.nopagina1-7es_MX
dc.identifier.doihttps://doi.org/10.1016/j.patrec.2023.05.005es_MX
dc.contributor.coauthorOchoa Domínguez, Humberto
dc.contributor.coauthorVergara Villegas, Osslan Osiris
dc.contributor.coauthorCruz Sanchez, Vianey Guadalupe
dc.contributor.coauthorPolanco Gonzalez, Javier
dc.contributor.alumno194726es_MX
dc.journal.titlePattern Recognition Letterses_MX
dc.contributor.authorexternoRodríguez, Leandro José
dc.contributor.coauthorexternoSossa, Juan Humberto
dcrupi.pronacesSaludes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09