Mostrar el registro sencillo del ítem

dc.contributor.authorRoldan Castellanos, Abraham
dc.date.accessioned2023-05-03T19:00:56Z
dc.date.available2023-05-03T19:00:56Z
dc.date.issued2023-01-17es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/25582
dc.description.abstractSustainable development generally includes three key dimensions: environmental, economic, and social. However, both in practice and in theory, the social dimension often receives less attention than the other two, even though it is just as important. This lack of focus can be seen in the lack of tools available to measure problems within the social dimension, such as emotional sustainability within the work environment. The objective of this research is to propose a methodology for emotional classification (ECM) using advanced systems such as artificial intelligence to serve as a tool for measuring emotional sustainability in a work environment. This methodology was applied in an institution whose objective was to accredit and comply with a Mexican standard (NOM-035) regarding stress and anxiety of labor personnel. As a result of the research, we have a method for emotional diagnosis that functions as a tool for the quantification and evaluation of emotions and thus contributes to the implementation of social sustainability. Finally, a proposal for improvements and factors to be taken into account in order to reproduce the ECW method is offered.es_MX
dc.description.urihttps://www.mdpi.com/2075-1680/12/2/97es_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectSocial sustainabilityes_MX
dc.subjectArtificial intelligencees_MX
dc.subjectDeep learninges_MX
dc.subjectEmotion classificationes_MX
dc.subjectEmotional sustainabilityes_MX
dc.subjectEmotional diagnosises_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleEmotional Classification Method (ECW): A Methodology for Measuring Emotional Sustainability in a Work Environment Utilizing Artificial Intelligencees_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista2es_MX
dcrupi.volumen12es_MX
dcrupi.nopagina1-23es_MX
dc.identifier.doihttps://doi.org/10.3390/axioms12020097es_MX
dc.contributor.coauthorPerez Olguin, Ivan Juan Carlos
dc.contributor.coauthorMéndez-González, Luis Carlos
dc.contributor.coauthorRodriguez Picon, Luis Alberto
dc.journal.titleAxiomses_MX
dc.contributor.authorexternoGutiérrez Vázquez, Aimeé
dcrupi.colaboracionextNoes_MX
dcrupi.impactosocialSi, se presenta una metodología para medir emociones en ambientes de trabajo mediante el uso de inteligencia artificial.es_MX
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesSaludes_MX
dcrupi.vinculadoproyintNoes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09