Mostrar el registro sencillo del ítem

dc.date.accessioned2023-01-09T20:43:01Z
dc.date.available2023-01-09T20:43:01Z
dc.date.issued2022-09-29es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/24380
dc.description.abstractfirst_pagesettingsOrder Article Reprints Open AccessArticle A Study of Stopping Rules in the Steepest Ascent Methodology for the Optimization of a Simulated Process by Paulo Eduardo García-Nava *,†ORCID,Luis Alberto Rodríguez-Picón †ORCID,Luis Carlos Méndez-GonzálezORCID andIván Juan Carlos Pérez-OlguínORCID Department of Industrial Engineering and Manufacturing, Autonomous University of Ciudad Juárez, Av. del Charro no. 450 Nte. Col. Partido Romero, Ciudad Juárez 32310, Chihuahua, Mexico * Author to whom correspondence should be addressed. † These authors contributed equally to this work. Axioms 2022, 11(10), 514; https://doi.org/10.3390/axioms11100514 Received: 5 September 2022 / Revised: 23 September 2022 / Accepted: 24 September 2022 / Published: 29 September 2022 (This article belongs to the Special Issue Applied Optimization and Decision Analysis on Interdisciplinary Areas) Download Browse Figures Review Reports Versions Notes Abstract Competitiveness motivates organizations to implement statistical approaches for improvement purposes. The literature offers a variety of quantitative methods intended to analyze and improve processes such as the design of experiments, steepest paths and stopping rules that search optimum responses. The objective of this paper is to run a first-order experiment to develop a steepest ascent path to subsequently apply three stopping rules (Myers and Khuri stopping rule, recursive parabolic rule and recursive parabolic rule enhanced) to identify the optimum experimentation stop from two different simulated cases. The method includes the consideration of the case study, the fitting of a linear model, the development of the steepest path and the application of stopping rules. Results suggest that procedures’ performances are similar when the response obeys a parametric function and differ when the response exhibits stochastic behavior. The discussion section shows a structured analysis to visualize these results and the output of each of the stopping rules in the two analyzed cases.es_MX
dc.description.urihttps://www.mdpi.com/2075-1680/11/10/514es_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectSteepest ascentes_MX
dc.subjectResponse surfacees_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleA Study of Stopping Rules in the Steepest Ascent Methodology for the Optimization of a Simulated Processes_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista10es_MX
dcrupi.volumen11es_MX
dcrupi.nopagina1-20es_MX
dc.identifier.doi10.3390/axioms11100514es_MX
dc.contributor.coauthorRodriguez Picon, Luis Alberto
dc.contributor.coauthorMéndez-González, Luis Carlos
dc.contributor.coauthorPerez Olguin, Ivan Juan Carlos
dc.journal.titleAxiomses_MX
dc.contributor.authorexternoGarcía Nava, Paulo Eduardo
dc.contributor.alumnoprincipal206600es_MX
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09