Mostrar el registro sencillo del ítem

dc.contributor.authorRivera Zarate, Gilberto
dc.date.accessioned2022-12-13T15:40:41Z
dc.date.available2022-12-13T15:40:41Z
dc.date.issued2022-11-19es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/22919
dc.description.abstractMany-objective optimization is an area of interest common to researchers, professionals, and practitioners because of its real-world implications. Preference incorporation into Multi-Objective Evolutionary Algorithms (MOEAs) is one of the current approaches to treat Many-Objective Optimization Problems (MaOPs). Some recent studies have focused on the advantages of embedding preference models based on interval outranking into MOEAs; several models have been proposed to achieve it. Since there are many factors influencing the choice of the best outranking model, there is no clear notion of which is the best model to incorporate the preferences of the decision maker into a particular problem. This paper proposes a hyper-heuristic algorithm—named HyperACO—that searches for the best combination of several interval outranking models embedded into MOEAs to solve MaOPs. HyperACO is able not only to select the most appropriate model but also to combine the already existing models to solve a specific MaOP correctly. The results obtained on the DTLZ and WFG test suites corroborate that HyperACO can hybridize MOEAs with a combined preference model that is suitable to the problem being solved. Performance comparisons with other state-of-the-art MOEAs and tests for statistical significance validate this conclusion.es_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectAnt Colony Optimizationes_MX
dc.subjectMany-objective evolutionary algorithmses_MX
dc.subjectPreference incorporationes_MX
dc.subjectOutranking approaches_MX
dc.subjectInterval numberses_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleAn ACO-based Hyper-heuristic for Sequencing Many-objective Evolutionary Algorithms that Consider Different Ways to Incorporate the DM's Preferenceses_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.volumen76es_MX
dc.identifier.doihttps://doi.org/10.1016/j.swevo.2022.101211es_MX
dc.journal.titleSwarm and Evolutionary Computationes_MX
dc.contributor.coauthorexternoCruz-Reyes, Laura
dc.contributor.coauthorexternoFernández, Eduardo
dc.contributor.coauthorexternoGómez-Santillán, Claudia
dc.contributor.coauthorexternoRangel-Valdez, Nelson
dc.contributor.coauthorexternoCoello Coello, Carlos Artemio
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09