Mostrar el registro sencillo del ítem

dc.contributor.authorMejia, Jose
dc.date.accessioned2022-09-08T18:51:25Z
dc.date.available2022-09-08T18:51:25Z
dc.date.issued2022-04-16es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/22194
dc.description.abstractProper inventory management is vital to achieving sustainability within a supply chain and is also related to a company’s cash flow through the funds represented by the inventory. Therefore, it is necessary to balance excess inventory and insufficient inventory. However, this can be difficult to achieve in the presence of stochastic demand because decisions must be made in an uncertain environment and the inventory policy bears risks associated with each decision. This study reports an extension of the single-period model for the inventory problem under uncertain demand. We proposed incorporating a Gaussian stochastic process into the model using the associated posterior distribution of the Gaussian process as a distribution for the demand. This enables the modeling of data from historical inventory demand using the Gaussian process theory, which adapts well to small datasets and provides measurements of the risks associated with the predictions made. Thus, unlike other works that assume that demand follows an autoregressive or Brownian motion model, among others, our approach enables adaptability to different complex forms of demand trends over time. We offer several numerical examples that explore aspects of the proposed approach and compare our results with those achieved using other state-of-the-art methods.es_MX
dc.description.urihttps://doi.org/10.3390/pr10040783es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/2.5/mx/*
dc.subject.otherinfo:eu-repo/classification/cti/1es_MX
dc.titleInventory Model with Stochastic Demand Using Single-Period Inventory Model and Gaussian Processes_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista4es_MX
dcrupi.volumen10es_MX
dcrupi.nopagina1-10es_MX
dc.identifier.doihttps://doi.org/10.3390/pr10040783es_MX
dc.contributor.coauthorAvelar, Liliana
dc.contributor.coauthorMederos, Boris
dc.contributor.coauthorGarcía-Alcaraz, Jorge Luis
dc.journal.titleProcesseses_MX
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09