Mostrar el registro sencillo del ítem
PSO, a Swarm Intelligence-Based Evolutionary Algorithm as a Decision-Making Strategy: A Review
dc.date.accessioned | 2022-09-08T17:52:27Z | |
dc.date.available | 2022-09-08T17:52:27Z | |
dc.date.issued | 2022-02-24 | es_MX |
dc.identifier.uri | http://cathi.uacj.mx/20.500.11961/22187 | |
dc.description.abstract | Companies are constantly changing in their organization and the way they treat information. In this sense, relevant data analysis processes arise for decision makers. Similarly, to perform decisionmaking analyses, multi-criteria and metaheuristic methods represent a key tool for such analyses. These analysis methods solve symmetric and asymmetric problems with multiple criteria. In such a way, the symmetry transforms the decision space and reduces the search time. Therefore, the objective of this research is to provide a classification of the applications of multi-criteria and metaheuristic methods. Furthermore, due to the large number of existing methods, the article focuses on the particle swarm algorithm (PSO) and its different extensions. This work is novel since the review of the literature incorporates scientific articles, patents, and copyright registrations with applications of the PSO method. To mention some examples of the most relevant applications of the PSO method; route planning for autonomous vehicles, the optimal application of insulin for a type 1 diabetic patient, robotic harvesting of agricultural products, hybridization with multi-criteria methods, among others. Finally, the contribution of this article is to propose that the PSO method involves the following steps: (a) initialization, (b) update of the local optimal position, and (c) obtaining the best global optimal position. Therefore, this work contributes to researchers not only becoming familiar with the steps, but also being able to implement it quickly. These improvements open new horizons for future lines of research. | es_MX |
dc.description.uri | https://www.mdpi.com/2073-8994/14/3/455 | es_MX |
dc.language.iso | spa | es_MX |
dc.relation.ispartof | Producto de investigación IIT | es_MX |
dc.relation.ispartof | Instituto de Ingeniería y Tecnología | es_MX |
dc.rights | CC0 1.0 Universal | * |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.subject | optimization methods | es_MX |
dc.subject | multi-criteria methods for decision making (MCDM) | es_MX |
dc.subject | analysis and decision making | es_MX |
dc.subject | metaheuristics; particle swarm lgorithm (PSO) | es_MX |
dc.subject.other | info:eu-repo/classification/cti/7 | es_MX |
dc.title | PSO, a Swarm Intelligence-Based Evolutionary Algorithm as a Decision-Making Strategy: A Review | es_MX |
dc.type | Artículo | es_MX |
dcterms.thumbnail | http://ri.uacj.mx/vufind/thumbnails/rupiiit.png | es_MX |
dcrupi.instituto | Instituto de Ingeniería y Tecnología | es_MX |
dcrupi.cosechable | Si | es_MX |
dcrupi.norevista | 3 | es_MX |
dcrupi.volumen | 14 | es_MX |
dcrupi.nopagina | 1-23 | es_MX |
dc.identifier.doi | https://doi.org/10.3390/ sym14030455 | es_MX |
dc.contributor.coauthor | Luviano Cruz, David | |
dc.contributor.coauthor | Martinez Gomez, Erwin Adan | |
dc.contributor.coauthor | Pérez Domínguez, Luis | |
dc.contributor.alumno | 206592 | es_MX |
dc.journal.title | Symmetry | es_MX |
dc.contributor.authorexterno | Ramírez-Ochoa, Dynhora-Danheyda | |
dc.contributor.coauthorexterno | Ramírez-Ochoa, Dynhora-Danheyda | |
dc.contributor.alumnoprincipal | 206592 | es_MX |
dcrupi.impactosocial | Desarrollo tecnológico, formación de recursos humanos y herramienta para la toma de decisiones en aspecto de la industria | es_MX |
dcrupi.pronaces | Educación | es_MX |