Mostrar el registro sencillo del ítem

dc.date.accessioned2022-09-08T17:52:27Z
dc.date.available2022-09-08T17:52:27Z
dc.date.issued2022-02-24es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/22187
dc.description.abstractCompanies are constantly changing in their organization and the way they treat information. In this sense, relevant data analysis processes arise for decision makers. Similarly, to perform decisionmaking analyses, multi-criteria and metaheuristic methods represent a key tool for such analyses. These analysis methods solve symmetric and asymmetric problems with multiple criteria. In such a way, the symmetry transforms the decision space and reduces the search time. Therefore, the objective of this research is to provide a classification of the applications of multi-criteria and metaheuristic methods. Furthermore, due to the large number of existing methods, the article focuses on the particle swarm algorithm (PSO) and its different extensions. This work is novel since the review of the literature incorporates scientific articles, patents, and copyright registrations with applications of the PSO method. To mention some examples of the most relevant applications of the PSO method; route planning for autonomous vehicles, the optimal application of insulin for a type 1 diabetic patient, robotic harvesting of agricultural products, hybridization with multi-criteria methods, among others. Finally, the contribution of this article is to propose that the PSO method involves the following steps: (a) initialization, (b) update of the local optimal position, and (c) obtaining the best global optimal position. Therefore, this work contributes to researchers not only becoming familiar with the steps, but also being able to implement it quickly. These improvements open new horizons for future lines of research.es_MX
dc.description.urihttps://www.mdpi.com/2073-8994/14/3/455es_MX
dc.language.isospaes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectoptimization methodses_MX
dc.subjectmulti-criteria methods for decision making (MCDM)es_MX
dc.subjectanalysis and decision makinges_MX
dc.subjectmetaheuristics; particle swarm lgorithm (PSO)es_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titlePSO, a Swarm Intelligence-Based Evolutionary Algorithm as a Decision-Making Strategy: A Reviewes_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista3es_MX
dcrupi.volumen14es_MX
dcrupi.nopagina1-23es_MX
dc.identifier.doihttps://doi.org/10.3390/ sym14030455es_MX
dc.contributor.coauthorLuviano Cruz, David
dc.contributor.coauthorMartinez Gomez, Erwin Adan
dc.contributor.coauthorPérez Domínguez, Luis
dc.contributor.alumno206592es_MX
dc.journal.titleSymmetryes_MX
dc.contributor.authorexternoRamírez-Ochoa, Dynhora-Danheyda
dc.contributor.coauthorexternoRamírez-Ochoa, Dynhora-Danheyda
dc.contributor.alumnoprincipal206592es_MX
dcrupi.impactosocialDesarrollo tecnológico, formación de recursos humanos y herramienta para la toma de decisiones en aspecto de la industriaes_MX
dcrupi.pronacesEducaciónes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09