Mostrar el registro sencillo del ítem

dc.date.accessioned2022-09-08T15:47:50Z
dc.date.available2022-09-08T15:47:50Z
dc.date.issued2022-04-13es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/22175
dc.description.abstractThe novel coronavirus (COVID-19) is a disease that mainly affects the lung tissue. The detection of lesions caused by this disease can help to provide an adequate treatment and monitoring its evolution. This research focuses on the bi nary classification of lung lesions caused by COVID-19 in images of computed tomography (CT) using deep learning. The database used in the experiments comes from two independent repositories, which contains tomographic scans of patients with a positive diagnosis of COVID-19. The output layers of four pre-trained convolutional networks were adapted to the proposed task and re-trained using the fine-tuning technique. The models were validated with test images from the two database’s repositories. The model VGG19, considering one of the repositories, showed the best performance with 88% and 90.2% of accuracy and recall, respectively. The model combination using the soft voting technique presented the highest accuracy (84.4%), with a recall of 94.4% employing the data from the other repository. The area under the receiver operating characteristic curve was 0.92 at best. The proposed method based on deep learning represents a valuable tool to automatically classify COVID-19 lesions on CT images and could also be used to assess the extent of lung infection.es_MX
dc.description.urihttp://rmib.mx/index.php/rmib/article/view/1208es_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectLung Lesionses_MX
dc.subjectClassificationes_MX
dc.subjectDeep Learninges_MX
dc.subjectComputed Tomographyes_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleDetection of COVID-19 Lung Lesions in Computed Tomography Images Using Deep Learninges_MX
dc.title.alternativeDetección de lesiones pulmonares por COVID-19 en imágenes de tomografía computarizada mediante aprendizaje profundoes_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista1es_MX
dcrupi.volumen43es_MX
dcrupi.nopagina7-18es_MX
dc.identifier.doidx.doi.org/10.17488/RMIB.43.1.1es_MX
dc.contributor.coauthorMederos, Boris
dc.contributor.coauthorMejia, Jose
dc.contributor.coauthorRascon Madrigal, Lidia Hortencia
dc.contributor.coauthorCota Ruiz, Juan De Dios
dc.contributor.coauthorDíaz Román, José David
dc.contributor.alumno157964es_MX
dc.journal.titleRevista Mexicana de Ingeniería Biomédicaes_MX
dcrupi.impactosocialSi, ya que se desarrolla un algoritmo para la deteccción de lesiones pulmonares debido al COVID-19, lo cual beneficiaría a evaluar el daño de la enfermedades_MX
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesSaludes_MX
dcrupi.vinculadoproyintNoes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09