Mostrar el registro sencillo del ítem

AutorBolivar, Armando
Accedido2022-08-02T18:14:29Z
Disponible2022-08-02T18:14:29Z
Fecha de publicación2022-06-11es_MX
ISSN0302-9743
Identificador de objeto (URI)http://cathi.uacj.mx/20.500.11961/22144
Resumen/AbstractThe interest in exploiting big datasets with machine learning has led to adapting classic strategies in this new paradigm determined by volume, speed, and variety. Because data quality is a determining factor in constructing a classifier, it has also been necessary to adapt or develop new data preprocessing techniques. One of the challenges of most significant interest is the class imbalance problem, where the class of interest has a smaller number of examples concerning another class called the majority. To alleviate this problem, one of the most recognized techniques is SMOTE, which is characterized by generating instances of the minority class through a process that uses the nearest neighbor rule and the Euclidean distance. Various articles have shown that SMOTE is not appropriate for datasets with high dimensionality. However, in big data, datasets with high dimensionality have contained many zeros. Therefore, in this article, our objective is to analyze the SMOTE-BD behavior on imbalanced big datasets with sparse and dense dimensionality. Experimental results using two classifiers and big datasets with different dimensionalities suggest that sparsity is a predominant factor than the dimensionality in the behavior of SMOTE-BD.es_MX
Idioma ISOen_USes_MX
EditorialSpringeres_MX
Referencias físicas o lógicasProducto de investigación IITes_MX
Referencias físicas o lógicasInstituto de Ingeniería y Tecnologíaes_MX
Tipo de licenciaAtribución-NoComercial-CompartirIgual 2.5 México*
Enlace a licenciahttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/*
TemaBig Dataes_MX
TemaHigh Dimensionalityes_MX
TemaClass Imbalancees_MX
Área de conocimiento CONACYTinfo:eu-repo/classification/cti/7es_MX
TítuloA Preliminary Study of SMOTE on Imbalanced Big Datasets When Dealing with Sparse and Dense High Dimensionalityes_MX
Tipo de productoMemoria in extensoes_MX
Imagen repositoriohttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
Instituto (dcrupi)Instituto de Ingeniería y Tecnologíaes_MX
CosechableSies_MX
SubtipoInvestigaciónes_MX
AlcanceInternacionales_MX
País de la publicaciónMexicoes_MX
CoautorGarcía, Vicente
CoautorFlorencia, Rogelio
CoautorRivera Zarate, Gilberto
CoautorSánchez Solís, Julia Patricia
Alumno198665es_MX
Tipo de eventoCongresoes_MX
Nombre de eventoMexican Conference on Pattern Recognition (MCPR 2022)es_MX
EstadoChihuahuaes_MX
dc.contributor.coauthorexternoAlejo Eleuterio, Roberto
dcrupi.pronacesEducaciónes_MX


Archivos en el ítem

No Thumbnail [100%x80]
No Thumbnail [100%x80]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-CompartirIgual 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09