Mostrar el registro sencillo del ítem

dc.contributor.authorBolivar, Armando
dc.date.accessioned2022-08-02T18:14:29Z
dc.date.available2022-08-02T18:14:29Z
dc.date.issued2022-06-11es_MX
dc.identifier.issn0302-9743
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/22144
dc.description.abstractThe interest in exploiting big datasets with machine learning has led to adapting classic strategies in this new paradigm determined by volume, speed, and variety. Because data quality is a determining factor in constructing a classifier, it has also been necessary to adapt or develop new data preprocessing techniques. One of the challenges of most significant interest is the class imbalance problem, where the class of interest has a smaller number of examples concerning another class called the majority. To alleviate this problem, one of the most recognized techniques is SMOTE, which is characterized by generating instances of the minority class through a process that uses the nearest neighbor rule and the Euclidean distance. Various articles have shown that SMOTE is not appropriate for datasets with high dimensionality. However, in big data, datasets with high dimensionality have contained many zeros. Therefore, in this article, our objective is to analyze the SMOTE-BD behavior on imbalanced big datasets with sparse and dense dimensionality. Experimental results using two classifiers and big datasets with different dimensionalities suggest that sparsity is a predominant factor than the dimensionality in the behavior of SMOTE-BD.es_MX
dc.language.isoen_USes_MX
dc.publisherSpringeres_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/*
dc.subjectBig Dataes_MX
dc.subjectHigh Dimensionalityes_MX
dc.subjectClass Imbalancees_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleA Preliminary Study of SMOTE on Imbalanced Big Datasets When Dealing with Sparse and Dense High Dimensionalityes_MX
dc.typeMemoria in extensoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisMexicoes_MX
dc.contributor.coauthorGarcía, Vicente
dc.contributor.coauthorFlorencia, Rogelio
dc.contributor.coauthorRivera Zarate, Gilberto
dc.contributor.coauthorSánchez Solís, Julia Patricia
dc.contributor.alumno198665es_MX
dcrupi.tipoeventoCongresoes_MX
dcrupi.eventoMexican Conference on Pattern Recognition (MCPR 2022)es_MX
dcrupi.estadoChihuahuaes_MX
dc.contributor.coauthorexternoAlejo Eleuterio, Roberto
dcrupi.pronacesEducaciónes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-CompartirIgual 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09