Mostrar el registro sencillo del ítem

dc.date.accessioned2022-07-28T18:49:38Z
dc.date.available2022-07-28T18:49:38Z
dc.date.issued2022-06-23es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/22141
dc.description.abstractThe use of face masks in public places has emerged as one of the most effective non-pharmaceutical measures to lower the spread of COVID-19 infection. This has led to the development of several detection systems for identifying people who do not wear a face mask. However, not all face masks or coverings are equally effective in preventing virus transmission or illness caused by viruses and therefore, it appears important for those systems to incorporate the ability to distinguish between the different types of face masks. This paper implements four pre-trained deep transfer learning models (NasNetMobile, MobileNetv2, ResNet101v2, and ResNet152v2) to classify images based on the type of face mask (KN95, N95, surgical and cloth) worn by people. Experimental results indicate that the deep residual networks (ResNet101v2 and ResNet152v2) provide the best performance with the highest accuracy and the lowest loss.es_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/2.5/mx/*
dc.subjectCOVID-19es_MX
dc.subjectFace Mask Detectiones_MX
dc.subjectDeep Learninges_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleDeep transfer learning for the recognition of types of face masks as a core measure to prevent the transmission of COVID-19es_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.volumen125es_MX
dcrupi.nopagina1-10es_MX
dc.identifier.doihttps://doi.org/10.1016/j.asoc.2022.109207es_MX
dc.contributor.coauthorGarcía, Vicente
dc.contributor.coauthorRivera Zarate, Gilberto
dc.contributor.alumno158883es_MX
dc.journal.titleApplied Soft Computing Journales_MX
dc.contributor.authorexternoMar-Cupido, Ricardo
dc.contributor.coauthorexternoSánchez, J. Salvador
dcrupi.colaboracionextEspañaes_MX
dc.contributor.alumnoprincipal158883es_MX
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesSaludes_MX
dcrupi.vinculadoproyintNoes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09