Mostrar el registro sencillo del ítem

dc.contributor.authorRivera Zarate, Gilberto
dc.date.accessioned2022-01-05T16:36:21Z
dc.date.available2022-01-05T16:36:21Z
dc.date.issued2021-12-23es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/19660
dc.description.abstractIn this paper, we enriched Ant Colony Optimization (ACO) with interval outranking to develop a novel multi-objective ACO optimizer to approach problems with many objective functions. This proposal is suitable if the preferences of the Decision Maker (DM) can be modeled through outranking relations. The introduced algorithm (Interval Outranking-based ACO, IO-ACO) is the first ant-colony optimizer that embeds an outranking model to bear vagueness and ill-definition of the DM's preferences. This capacity is the most differentiating feature of IO-ACO because this issue is highly relevant in practice. IO-ACO biases the search towards the Region of Interest (RoI), the privileged zone of the Pareto frontier containing the solutions that better match the DM's preferences. Two widely studied benchmarks were utilized to measure the efficiency of IO-ACO, i.e., the DTLZ and WFG test suites. Accordingly, IO-ACO was compared with four competitive multi-objective optimizers: The Indicator-based Many-Objective ACO, the Multi-objective Evolutionary Algorithm Based on Decomposition, the Reference Vector-Guided Evolutionary Algorithm using Improved Growing Neural Gas, and the Indicator-based Multi-objective Evolutionary Algorithm with Reference Point Adaptation. The numerical results show that IO-ACO approximates the RoI better than leading metaheuristics based on approximating the Pareto frontier alone.es_MX
dc.description.urihttps://www.sciencedirect.com/science/article/abs/pii/S2210650221001863es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectSwarm Intelligencees_MX
dc.subjectMany-Objective Optimizationes_MX
dc.subjectInterval Outrankinges_MX
dc.subjectVagueness in the DM's preferenceses_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titlePreference Incorporation into Many-Objective Optimization: An Ant Colony Algorithm based on Interval Outrankinges_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dc.identifier.doi10.1016/j.swevo.2021.101024es_MX
dc.journal.titleSwarm and Evolutionary Computationes_MX
dc.contributor.coauthorexternoCarlos Artemio, Coello Coello
dc.contributor.coauthorexternoLaura, Cruz Reyes
dc.contributor.coauthorexternoEduardo, Fernández
dc.contributor.coauthorexternoClaudia, Gómez Santillán
dc.contributor.coauthorexternoNelson, Rangel Valdez
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09