Mostrar el registro sencillo del ítem

dc.contributor.authorRivera Zarate, Gilberto
dc.date.accessioned2022-01-05T16:30:19Z
dc.date.available2022-01-05T16:30:19Z
dc.date.issued2021-12-08es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/19658
dc.description.abstractThis paper presents Outranking-based Particle Swarm Optimisation (O-PSO) a novel metaheuristic to address the multi-objective Unrelated Parallel Machine Scheduling Problem. It is a particle swarm optimisation algorithm enriched with the preferences of the Decision Maker (DM), articulated in a fuzzy relational system based on ELECTRE III. Unlike other multi-objective metaheuristics, O-PSO searches for the Region of Interest (RoI) instead of approximating a sample of the complete Pareto frontier. The RoI is the subset consisting of those Pareto-efficient solutions that satisfy the outranking relations, that is, they are the best solutions in terms of the DM’s system of preferences. Therefore, O-PSO not only approximates the Pareto solutions but also supports multicriteria decision analysis of the schedules. The efficiency of O-PSO is validated on a benchmark of synthetic instances from the scientific literature, where the Wilcoxon rank-sum test provides statistical evidence that O-PSO offers high-quality solutions when compared with two state-of-the-art metaheuristics; specifically, O-PSO is capable of generating a greater proportion of solutions (on average, ranging from 7% to 14%) dominating those of the state-of-the-art algorithms, as well as finding more solutions (from 13% to 18%) that satisfy the DM’s preferences. O-PSO is also applied to a real-world case study in the transport industry to provide evidence for its applicability.es_MX
dc.description.urihttps://www.sciencedirect.com/science/article/abs/pii/S0952197621003985es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectSwarm intelligencees_MX
dc.subjectMulti-objective optimisationes_MX
dc.subjectFuzzy outrankinges_MX
dc.subjectUnrelated parallel machine schedulinges_MX
dc.subjectParticle swarm optimisationes_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleOutranking-based multi-objective PSO for scheduling unrelated parallel machines with a freight industry-oriented applicationes_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.volumen108es_MX
dcrupi.nopagina1-13es_MX
dc.identifier.doi10.1016/j.engappai.2021.104556es_MX
dc.contributor.coauthorFlorencia, Rogelio
dc.contributor.coauthorSánchez Solís, Julia Patricia
dc.contributor.coauthorGarcía, Vicente
dc.contributor.alumno206602es_MX
dc.journal.titleEngineering Applications of Artificial Intelligencees_MX
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09