Mostrar el registro sencillo del ítem

dc.date.accessioned2022-01-04T17:35:13Z
dc.date.available2022-01-04T17:35:13Z
dc.date.issued2021-05-19es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/19645
dc.description.abstractTime Series Classification (TSC) is an intricate problem that has encountered applications in various science fields. Accordingly, many researchers have presented interesting proposals to tackle the TSC problem. Nevertheless, most methods are hand-crafted to classify specific Time Series (TS) and are computationally expensive even for small data sets. In this paper, we propose a new approach to the Multilayer Perceptron (MLP) for TSC. The main novelty is that the hyperparameters related to batch size and the number of neurons in the hidden layers are auto-adapted according to the TS nature. We carried out an empirical study on 61 benchmark data sets from the University of California, Riverside (UCR). The experimental evaluation revealed that our proposal is competitive when we compare the accuracy versus 14 state-of-the-art methods. A non-parametric statistical test verifies that the proposed MLP ranked in fourth place and can be executed on standard computer equipment, making it simple, accessible, and competitive.es_MX
dc.description.urihttps://www.sciencedirect.com/science/article/abs/pii/S0957417421005881es_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectTime serieses_MX
dc.subjectTime series classificationes_MX
dc.subjectMultilayer perceptrones_MX
dc.subjectUCR data setes_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleAuto-adaptive Multilayer Perceptron for Univariate Time Series Classificationes_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.volumen181es_MX
dcrupi.nopagina1-14es_MX
dc.identifier.doi10.1016/j.eswa.2021.115147es_MX
dc.contributor.coauthorCruz Sanchez, Vianey Guadalupe
dc.contributor.coauthorOchoa Domínguez, Humberto
dc.contributor.coauthorGarcía, Vicente
dc.contributor.coauthorVergara Villegas, Osslan Osiris
dc.contributor.alumno171515es_MX
dc.journal.titleExpert Systems with Applicationses_MX
dc.contributor.authorexternoArias del Campo, Felipe
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09