Mostrar el registro sencillo del ítem

dc.contributor.authorMejia, Jose
dc.date.accessioned2021-12-02T16:11:03Z
dc.date.available2021-12-02T16:11:03Z
dc.date.issued2021-04-29es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/19430
dc.description.abstractTime series emerge in various applications such as financial data and production data, however, most of the generated data exhibit nonlinear inter-dependency between samples and noise, making necessary the development of methods capable of handling such nonlinearities and other abnormalities. In this paper we present an architecture for prediction of time series embedded in noise. The proposed architecture combines a convolutional and long short term memory (LSTM) layers into a structure similar to an analysis filterbank of two channels. The first element of each channel is a convolutional layer followed by a LSTM, which is able to find temporal dependencies of the signal. Finally the channels are summed to obtain a prediction. We found that the frequency response of the filters resemble a complementary filter bank response, with each channel having a maximum at different bands which could suggest that it characterizes the incoming signal in frequency. Comparisons with other methods demonstrate that the proposed method offer much better results in terms of different error measures.es_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjecttime serieses_MX
dc.subjectLSTMes_MX
dc.subjectFilter bankes_MX
dc.subjectpredictiones_MX
dc.subjectseries de tiempoes_MX
dc.subjectrecurrentes_MX
dc.subjectdeep learninges_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titlePrediction of time series using an analysis filter bank of LSTM unitses_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.volumen157es_MX
dc.identifier.doihttps://doi.org/10.1016/j.cie.2021.107371es_MX
dc.contributor.coauthorAvelar, Liliana
dc.contributor.coauthorMederos, Boris
dc.contributor.coauthorSantiago Ramírez, Everardo
dc.contributor.coauthorDíaz Román, José David
dc.journal.titleComputers & Industrial Engineeringes_MX
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09