Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía, Vicente
dc.date.accessioned2021-11-30T17:13:48Z
dc.date.available2021-11-30T17:13:48Z
dc.date.issued2021-11-23es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/19386
dc.description.abstractIn machine learning, a natural way to represent an instance is by a feature vector. However, several studies have shown that this representation may not characterize an object accurately. For classification problems, the dissimilarity paradigm has been proposed as an alternative to the standard feature-based approach. Encoding each object by pairwise dissimilarities has demonstrated to improve the data quality because it mitigates some complexities such as the class overlap, the small disjuncts, or the lack of samples. However, it has not been fully explored its suitability and performance when applied to regression problems. This paper redefines the dissimilarity representation for regression. To this end, we have carried out an extensive experimental evaluation on 34 data sets with two linear regression models. The results show that the dissimilarity approach decreases the error rates of both the traditional linear regression and the linear model with elastic net regularization, and it also reduces the complexity of most regression data sets.es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/mx/*
dc.subjectMachine Learninges_MX
dc.subjectDissimilarity Representationes_MX
dc.subjectLinear Modelses_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleRevisiting the Dissimilarity Representation in the Context of Regressiones_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.nopagina1-9es_MX
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2021.3130127es_MX
dc.contributor.coauthorMéndez-González, Luis Carlos
dc.journal.titleIEEE Accesses_MX
dc.contributor.coauthorexternoSánchez, José Salvador
dc.contributor.coauthorexternoMartínez-Pelaez, Rafael
dcrupi.colaboracionextEspañaes_MX
dcrupi.colaboracionextRegressiones_MX
dcrupi.pronacesNingunoes_MX
dcrupi.vinculadoproyintModelos de regresión lineal en espacios de disimilitud: Construcción y Evaluaciónes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09