Mostrar el registro sencillo del ítem
Clinical Diagnosis of Chronic Stress Using Bio-Signals Within the Framework of Industrial Revolution 4.0
dc.contributor.author | Roldan Castellanos, Abraham | |
dc.date.accessioned | 2021-11-25T18:12:45Z | |
dc.date.available | 2021-11-25T18:12:45Z | |
dc.date.issued | 2021-09-23 | es_MX |
dc.identifier.isbn | 9781938462-1-9 | |
dc.identifier.uri | http://cathi.uacj.mx/20.500.11961/19273 | |
dc.description.abstract | New proposals and tools provided by Industry 4.0 and the elements of intelligent classification have removed the barrier to analysis of previously unmeasurable conditions, such as stress and the emotional spectrum. Stress is a well-known condition in industrial work environments and although it is a necessary biological function, in high doses, it becomes a chronic condition capable of triggering dangerous diseases. This paper seeks to show an approach to the smart technological diagnosis of chronic stress within a workplace environment, with the goal to promote compliance of new norms of worker welfare that are found within the social section of Industry 4.0. In this context, we discuss both acute stress and chronical stress. Acute stress is the common stress found for a short period of time when the body needs to adapt to an unknown or unexpected situation; in contrast, chronic stress is present as a result of constant stressful stimuli and becomes the body’s new norm. To accurately give a clinical diagnosis for chronic stress in an industrial environment, a full framework for emotional detection with a real-time diagnosis approach is required, as is referencing a practical case of study for industrial applications. The result of such analysis is a better understanding of the current challenges and opportunities, as well as tools for a more human oriented company all in a full technological cybermedicine diagnosis. | es_MX |
dc.description.uri | http://www.ieworldconference.org/content/SISE2021/SISE2021.html | es_MX |
dc.language.iso | en_US | es_MX |
dc.publisher | SISE | es_MX |
dc.relation.ispartof | Producto de investigación IIT | es_MX |
dc.relation.ispartof | Instituto de Ingeniería y Tecnología | es_MX |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 México | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/mx/ | * |
dc.subject | Bio-Data | es_MX |
dc.subject | Industry 4.0 | es_MX |
dc.subject | Stress Diagnosis | es_MX |
dc.subject.other | info:eu-repo/classification/cti/7 | es_MX |
dc.title | Clinical Diagnosis of Chronic Stress Using Bio-Signals Within the Framework of Industrial Revolution 4.0 | es_MX |
dc.type | Memoria in extenso | es_MX |
dcterms.thumbnail | http://ri.uacj.mx/vufind/thumbnails/rupiiit.png | es_MX |
dcrupi.instituto | Instituto de Ingeniería y Tecnología | es_MX |
dcrupi.cosechable | Si | es_MX |
dcrupi.subtipo | Investigación | es_MX |
dcrupi.alcance | Internacional | es_MX |
dcrupi.pais | Estados Unidos | es_MX |
dc.contributor.coauthor | Perez Olguin, Ivan Juan Carlos | |
dc.contributor.coauthor | Ochoa, Alberto | |
dcrupi.tipoevento | Congreso | es_MX |
dcrupi.evento | 10th Annual World Conference of the Society for Industrial and Systems Engineering | es_MX |
dcrupi.impactosocial | Si, se presenta estudio para desarrollo de equipo utilizado para el diagnóstico crónico de estrés utilizando bio señales, dentro del contexto de la industria 4.0 | es_MX |
dcrupi.vinculadoproyext | No Aplica | es_MX |
dcrupi.pronaces | Salud | es_MX |
dcrupi.vinculadoproyint | No Aplica | es_MX |
Archivos en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Memoria en extenso [270]