Design of protective vessel and irrigation system for an organ-on-chip device
Resumen
New devices have been in development in the biomedical engineering field which allow to mimic several physiological processes at once or individually. The present work introduces a design and computational simulation of the nutrient irrigation system, as well as the rapid prototyping of the protective vessel of an organ-on-chip (OOC) device as a way to manipulate and transport the system easily as a whole while maintaining the proper irrigation conditions in the media. The device was generated with the computer-aided design (CAD) software, SolidWorks and the irrigation of the system was performed with the aid of SolidWorks Flow Simulation module. The components of the presented OOC system were manufactured by 3D printing and by using the stereolithography technique. The results showed the flow velocity fields with values in the rage of 0.1830 m/s in the zone were the OOC is located, which indicates would allow a proper irrigation of nutrients to the cells in the chip. The proposed design of the OOC device as a whole, demonstrated to be an adequate storage and handling system for the OOC, in addition of providing a continuous irrigation of the medium.