Magnetoelastic transition and magnetocaloric effect in induction melted Fe100-xRhx bulk alloys with x = 50, 51
Fecha
2021-03-23Autor
Sánchez Valdés, César Fidel
Arreguín-Hernández, M.L.
Sánchez Llamazares, J.L.
Ríos-Jara, D.
Pecharsky, V.K.
Blinov, M.I.
Prudnikov, V.N.
Kovalev, B.B.
Zverev, V.I.
Tishin, A.M.
Metadatos
Mostrar el registro completo del ítemResumen
Magnetoelastic transitions (METs) in bulk in nearly equiatomic Fe-Rh alloys produced by arc melting may show poor reproducibility related to insufficient chemical homogeneity and presence of impurity phases in variable concentrations. To better understand the synthesis conditions that reliably yield bulk FeRh ma- terials with reproducible MET characteristics, Fe100-xRhx alloys with x = 50, 50.5 and 51 at. % were prepared by induction melting and thermal annealing under identical conditions. The fabricated samples were cut into several slices, followed by characterization of METs in each of the slices using isothermal and isofield magnetization measurements, differential scanning calorimetry, and direct measurements of the magne- tocaloric effect. All of the slices exhibit METs between the AFM and FM states, but the transitions are abrupt with nearly the same change of magnetization, ΔM, when x = 50.5 and 51, whereas for the x = 50 alloy the transition spreads over a wide temperature interval and ΔM may fluctuate by as much as 10 % from one specimen to another. A comparison of the magnetocaloric responses of x = 50 and 51 materials is presented. The clearly different effect of the magnetic field on the transition in both directions leads to significant differences in the reversibility and maximum values of the magnetic field-induced entropy and adiabatic temperature changes, as well as average hysteresis losses. In terms of reproducibility, our results suggest that induction melting is a more appropriate technique to prepare these binary alloys.
Colecciones
El ítem tiene asociados los siguientes archivos de licencia: