Mostrar el registro sencillo del ítem

dc.date.accessioned2021-01-05T00:33:33Z
dc.date.available2021-01-05T00:33:33Z
dc.date.issued2020-01-30es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/16622
dc.description.abstractA large number of real-world problems require optimising several objective functions at the same time, which are generally in conflict. Many of these problems have been addressed through multi-objective evolutionary algorithms. In this paper, we propose a new hybrid evolutionary algorithm whose main feature is the incorporation of the Decision Maker’s (DM’s) preferences through multi-criteria ordinal classification methods in early stages of the optimisation process, being progressively updated. This increases the selective pressure towards the privileged zone of the Pareto front more in agreement with the DM’s preferences. An extensive experimental research was conducted to answer three main questions: i) to what extent the proposal improves the convergence towards the region of interest for the DM; ii) to what extent the proposal becomes more relevant as the number of objectives increases, and iii) to what extent the effectiveness of the hybrid algorithm depends on the particular multi-criteria method used to assign solutions to ordered classes. The issues used to evaluate our proposal and answer the questions were seven scalable test problems from the DTLZ test suite and some instances of project portfolio optimisation problems, with three and eight objectives. Compared to MOEA/D and MOEA/D-DE, the results showed that the proposed strategy obtains a better convergence towards the region of interest for the DM and also performs better characterisation of that zone on a wide range of objective functions.es_MX
dc.description.urihttps://www.sciencedirect.com/science/article/abs/pii/S2210650219304274es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectEvolutionary multi-objective optimisationes_MX
dc.subjectMulti-criteria ordinal classificationes_MX
dc.subjectPreference incorporationes_MX
dc.subject.otherinfo:eu-repo/classification/cti/1es_MX
dc.titleHybrid evolutionary multi-objective optimisation using outranking-based ordinal classification methodses_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.volumen54es_MX
dcrupi.nopagina1-17es_MX
dc.identifier.doihttps://doi.org/10.1016/j.swevo.2020.100652es_MX
dc.contributor.coauthorSánchez Solís, Julia Patricia
dc.journal.titleSwarm and Evolutionary Computationes_MX
dc.lgacOPTIMIZACIÓN INTELIGENTEes_MX
dc.cuerpoacademicoSin cuerpo académicoes_MX
dc.contributor.authorexternoCruz-Reyes, Laura
dc.contributor.coauthorexternoFernandez, Eduardo
dc.contributor.coauthorexternoCoello Coello, Carlos A.
dc.contributor.coauthorexternoGomez, Claudia


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09