Mostrar el registro sencillo del ítem
Short-Term Electricity Market Price Forecasting Based on De-Noised Wavelets and NARX Neural Network- Data Analytics Approach
Autor | Villegas, Rossana | |
Accedido | 2020-01-17T20:38:20Z | |
Disponible | 2020-01-17T20:38:20Z | |
Fecha de publicación | 2019-04 | |
ISSN | 1-60132-501-0 | |
Identificador de objeto (URI) | http://cathi.uacj.mx/20.500.11961/11269 | |
Resumen/Abstract | Electricity price data is often non-linear and highly volatile. Under a weather and climate disaster event, price forecasting represents a challenging task. Noise in electricity price data is commonly affected by several factors such as season, weekend or workday, critical event, etc. In this study, the proposed model uses a de-noised wavelet as a pre-processing algorithm to reduce price noise characteristics and a Non-linear Auto-Regression eXogenous (NARX) Neural Network (NN) for the data analytic approach. To test price forecasting, a seasonal week-ahead (168 hrs.) window is used. The forecasting models are evaluated using the Mean Absolute Percentage Error (MAPE). The model and methodology proposed show a remarkable improvement over standard methodologies, complemented by data visualization. | es_MX |
Idioma ISO | en | es_MX |
Editorial | CSREA Press | es_MX |
Referencias físicas o lógicas | Producto de investigación IIT | es_MX |
Referencias físicas o lógicas | Instituto de Ingeniería y Tecnología | es_MX |
Tipo de licencia | Atribución-NoComercial-SinDerivadas 2.5 México | * |
Enlace a licencia | http://creativecommons.org/licenses/by-nc-nd/2.5/mx/ | * |
Área de conocimiento CONACYT | info:eu-repo/classification/cti/7 | es_MX |
Título | Short-Term Electricity Market Price Forecasting Based on De-Noised Wavelets and NARX Neural Network- Data Analytics Approach | es_MX |
Tipo de producto | Memoria in extenso | es_MX |
Imagen repositorio | http://ri.uacj.mx/vufind/thumbnails/rupiiit.png | es_MX |
Instituto (dcrupi) | Instituto de Ingeniería y Tecnología | es_MX |
Cosechable | Si | es_MX |
Subtipo | Investigación | es_MX |
Alcance | Internacional | es_MX |
País de la publicación | Estados Unidos | es_MX |
Tipo de evento | Congreso | es_MX |
Nombre de evento | 2019 World Congress in Computer Science, Computing Engineering & Applied Computing | es_MX |
Estado | Nevada | es_MX |
Línea de investigación | Sin línea de generación | es_MX |
Cuerpo académico | Sin cuerpo académico | es_MX |
Archivos en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Memoria en extenso [291]