Mostrar el registro sencillo del ítem

dc.contributor.authorVillegas, Rossana
dc.date.accessioned2020-01-17T20:38:20Z
dc.date.available2020-01-17T20:38:20Z
dc.date.issued2019-04
dc.identifier.issn1-60132-501-0
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/11269
dc.description.abstractElectricity price data is often non-linear and highly volatile. Under a weather and climate disaster event, price forecasting represents a challenging task. Noise in electricity price data is commonly affected by several factors such as season, weekend or workday, critical event, etc. In this study, the proposed model uses a de-noised wavelet as a pre-processing algorithm to reduce price noise characteristics and a Non-linear Auto-Regression eXogenous (NARX) Neural Network (NN) for the data analytic approach. To test price forecasting, a seasonal week-ahead (168 hrs.) window is used. The forecasting models are evaluated using the Mean Absolute Percentage Error (MAPE). The model and methodology proposed show a remarkable improvement over standard methodologies, complemented by data visualization.es_MX
dc.language.isoenes_MX
dc.publisherCSREA Presses_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleShort-Term Electricity Market Price Forecasting Based on De-Noised Wavelets and NARX Neural Network- Data Analytics Approaches_MX
dc.typeMemoria in extensoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisEstados Unidoses_MX
dcrupi.tipoeventoCongresoes_MX
dcrupi.evento2019 World Congress in Computer Science, Computing Engineering & Applied Computinges_MX
dcrupi.estadoNevadaes_MX
dc.lgacSin línea de generaciónes_MX
dc.cuerpoacademicoSin cuerpo académicoes_MX


Archivos en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09