Mostrar el registro sencillo del ítem
Which fourier components are most informative: General idea and case studies
dc.contributor.author | Gordillo Castillo, Nelly | |
dc.date.accessioned | 2020-01-09T18:27:40Z | |
dc.date.available | 2020-01-09T18:27:40Z | |
dc.date.issued | 2019-05-01 | |
dc.identifier.uri | http://cathi.uacj.mx/20.500.11961/10116 | |
dc.description.abstract | In many practical situations, the information comes not in terms of the original image or signal, but in terms of its Fourier transform. To detect complex features based on this information, it is often necessary to use machine learning. In the Fourier transform, usually, there are many components, and it is not easy to use all of them in machine learning. So, we need to select the most informative components. In this paper, we provide general recommendations on how to select such components. We also show that these recommendations are in good accordance with two examples: the structure of the human color vision, and classification of lung dysfunction in children. © 2019 World Academic Press, UK. All rights reserved. | es_MX |
dc.language.iso | en | es_MX |
dc.relation.ispartof | Producto de investigación IIT | es_MX |
dc.relation.ispartof | Instituto de Ingeniería y Tecnología | es_MX |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 México | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/mx/ | * |
dc.subject | Oscillometry | es_MX |
dc.subject | Asthma | es_MX |
dc.subject | Oscillometry IOS | es_MX |
dc.subject.other | info:eu-repo/classification/cti/7 | es_MX |
dc.title | Which fourier components are most informative: General idea and case studies | es_MX |
dc.type | Artículo | es_MX |
dcterms.thumbnail | http://ri.uacj.mx/vufind/thumbnails/rupiiit.png | es_MX |
dcrupi.instituto | Instituto de Ingeniería y Tecnología | es_MX |
dcrupi.cosechable | Si | es_MX |
dcrupi.norevista | 2 | es_MX |
dcrupi.volumen | 13 | es_MX |
dcrupi.nopagina | 138-141 | es_MX |
dc.contributor.coauthor | Urenda, Julio | |
dc.contributor.coauthor | Avila, Nancy | |
dc.contributor.coauthor | Kreinovich, Vladik | |
dc.journal.title | Journal of Uncertain Systems | es_MX |
dc.lgac | PROCESAMIENTO DE SEÑALES | es_MX |
dc.cuerpoacademico | Procesamiento Avanzado de Imágenes Médicas | es_MX |