Mostrar el registro sencillo del ítem

dc.contributor.authorSevereyn, Erika
dc.date.accessioned2019-11-22T19:45:34Z
dc.date.available2019-11-22T19:45:34Z
dc.date.issued2019-10-05
dc.identifier.isbn978-3-030-30648-9es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/8646
dc.description.abstractThe type-2 diabetes (T2D) is a multifactorial chronic disease that reduces the quality of lifestyle and produces the death of a large percentage of the population worldwide. Before the development of T2D a series of symptoms are presented even years before T2D diagnosis. This condition that appears before the development of T2D is called prediabetes. Prediabetes and T2D are diagnosed from the oral glucose tolerance test (OGTT). The OGTT consists in the measurement of glucose and insulin in five-time intervals, the first after 8 h of fasting (0 min) and the other four measurements after taking 75 g of oral glucose in 30-minutes intervals (30, 60, 90 and 120 min). Some parameters have been used to improve the efficiency in the diagnosis of prediabetes and T2D, for example: the area under the glucose (AUCG) and insulin (AUCI) curve during OGTT has been used as a parameter for the diagnosis of prediabetes, T2D and obesity. The aim of this study is to assess the k-means clustering algorithm in the classification of subjects with prediabetes and T2D using the AUCG and AUCI. A database of 188 subjects (male = 88 subjects, age = 42.11 ± 14.91 years old) with values of plasma glucose and insulin during OGTT was used. The k-means clustering performed for AUCG presents acceptable results since the silhouette coefficient is above 0.6 in all cases. The findings in this study indicate that the k-means applied in the AUCG classify subjects with T2D, prediabetes and control. Furthermore, it could even predict those subjects with high probabilities of developing T2D.es_MX
dc.description.urihttp://www.springer.com/series/7403es_MX
dc.language.isoenes_MX
dc.publisherSpringeres_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectK-meanses_MX
dc.subjectOral glucose tolerance testes_MX
dc.subjectArea under the insulin curvees_MX
dc.subjectArea under the glucose curvees_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleDiagnosis of Type 2 Diabetes and Pre-diabetes Using Machine Learninges_MX
dc.typeCapítulo de libroes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.nopagina972-802es_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisMéxicoes_MX
dc.identifier.doihttps://doi.org/10.1007/978-3-030-30648-9_105es_MX
dc.contributor.coauthorWong, Sara
dc.contributor.coauthorVelásquez, Jesús
dc.contributor.coauthorPerpiñan, GIlberto
dc.contributor.coauthorHerrera, Héctor
dc.contributor.coauthorAltuve, Miguel
dc.contributor.coauthorDiaz Roman, Jose David
dcrupi.estadoQuintana Rooes_MX
dc.lgacProcesamiento de Imágenes Biomédicas y Bioinformáticaes_MX
dc.cuerpoacademicoEstudios en Sistemas Digitaleses_MX
dcrupi.titulolibroIFMBE Proceedings. VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineeringes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09