Mostrar el registro sencillo del ítem

dc.contributor.authorBalderrama Armendariz, Cesar Omar
dc.date.accessioned2019-11-08T17:21:13Z
dc.date.available2019-11-08T17:21:13Z
dc.date.issued2019-08-06
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/8414
dc.description.abstractDue to the layer-by-layer nature of additive manufacturing, fabricated parts suffer from an anisotropic behavior with reduced mechanical performance when compared to traditional manufacturing. One specific mechanical property, folding endurance, requires both low flexural strength and simultaneously high elongation to achieve the flexibility needed to sustain repetitive bending. The present work provides an analysis of selected thermoplastics’ flexural capacity, including nylon (PA), polyethylene terephthalate (PETG), polylactide (PLA), thermoplastic polyurethane (TPU), polypropylene (PP), polyethylene (PE), and a TPR blend (ABSMG94: SEBS-g-MA 25:75), in order to evaluate the maximum number of folding cycles and load capacity sustained by a living hinge. A fractographic analysis was performed using scanning electron microscopy and computed tomography. Similar to the performance of injected molded products, the experimental results demonstrated that three of the tested materials behaved well in the context of a large number of folding cycles prior to an eventual detachment into two pieces; TPR blend, 244,424 cycles; PP endured one million cycles; and TPU, more than two million cycles, while the remaining materials failed to survive more than 1000 cycles. The hinges failure analysis revealed a wide variety of fracture morphologies and failure modes. In regard to the load capacity, PLA, PETG, and nylon provided the highest results in the ultimate strength of an axial static force applied (790.61 N, 656.06 N, and 652.75 N respectively), while the TPR blend was the highest (398.44 N) of the elastomeric materials (PP, TPU, and TPR blend). The evaluated materials demonstrated enough flexibility for use in specific applications such as stretchable electronics and wearable applications.es_MX
dc.description.urihttps://link.springer.com/article/10.1007/s00170-019-04196-xes_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación IADAes_MX
dc.relation.ispartofInstituto de Arquitectura Diseño y Artees_MX
dc.subjectPolymer extrusiones_MX
dc.subjectAdditive manufacturinges_MX
dc.subjectFolding endurancees_MX
dc.subjectFlexible 3D printed materialses_MX
dc.subjectFlexible Aplicationses_MX
dc.subjectFused depositiones_MX
dc.subject.otherinfo:eu-repo/classification/cti/4es_MX
dc.titleFolding behavior of thermoplastic hinges fabricated with polymer extrusion additive manufacturinges_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiada.pnges_MX
dcrupi.institutoInstituto de Arquitectura Diseño y Artees_MX
dcrupi.cosechableSies_MX
dc.identifier.doihttps://doi.org/10.1007/s00170-019-04196-xes_MX
dc.contributor.coauthorMaldonado-Macías, Aide
dc.contributor.coauthorMacDonald, Eric
dc.contributor.coauthorRoberson, David
dc.contributor.coauthorRuiz, Leopoldo
dc.contributor.coauthorValadez, Esdras
dc.contributor.coauthorEspalin, David
dc.contributor.coauthorCaballero, Alberto
dc.journal.titleInternational Journal of Advanced Manufacturing Technologyes_MX
dc.lgacDesarrollo para el Diseño de Productos y Procesos Consecuenteses_MX
dc.cuerpoacademicoApariencia del Productoes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09