Mostrar el registro sencillo del ítem
Improvement of the Optimization of an Order Picking Model Associated With the Components of a Classic Volkswagen Beetle Using an Ant Colony Approach
dc.contributor.author | Olmos, Jared | |
dc.date.accessioned | 2019-10-28T16:17:47Z | |
dc.date.available | 2019-10-28T16:17:47Z | |
dc.date.issued | 2019-04-09 | |
dc.identifier.isbn | 978-1522581314 | es_MX |
dc.identifier.uri | http://cathi.uacj.mx/20.500.11961/8263 | |
dc.description.abstract | Warehouse operations, specifically order picking process, are receiving close attention of researches due to the need of companies in minimizing operational costs. This chapter explains an ant colony optimization (ACO) approach to improve the order picking process in an auto parts store associated with the components of a classic Volkswagen Beetle car. Order picking represents the most time-consuming task in the warehouse operational expenses and, according to the scientific literature, is becoming a subject matter in operational research. It implements a low-level, picker-to-part order picking using persons as pickers with multiple picks per route. The context of the case study is a discrete picking where users’ orders are independent. The authors use mathematical modeling to improve de ACO metaheuristic approach to minimize the order-picking cost. | es_MX |
dc.language.iso | en | es_MX |
dc.publisher | IGI Global | es_MX |
dc.relation.ispartof | Producto de investigación IIT | es_MX |
dc.relation.ispartof | Instituto de Ingeniería y Tecnología | es_MX |
dc.subject | Optimization | es_MX |
dc.subject | Ant Colony Algorithm | es_MX |
dc.subject | order-picking | es_MX |
dc.subject.other | info:eu-repo/classification/cti/1 | es_MX |
dc.title | Improvement of the Optimization of an Order Picking Model Associated With the Components of a Classic Volkswagen Beetle Using an Ant Colony Approach | es_MX |
dc.type | Capítulo de libro | es_MX |
dcterms.thumbnail | http://ri.uacj.mx/vufind/thumbnails/rupiiit.png | es_MX |
dcrupi.instituto | Instituto de Ingeniería y Tecnología | es_MX |
dcrupi.cosechable | Si | es_MX |
dcrupi.subtipo | Investigación | es_MX |
dcrupi.nopagina | 189-211 | es_MX |
dcrupi.alcance | Internacional | es_MX |
dcrupi.pais | Estados Unidos | es_MX |
dc.contributor.coauthor | Florencia Juarez, Rogelio | |
dc.contributor.coauthor | López-Ramos, Francisco | |
dc.contributor.coauthor | Olmos Sanchez, Karla Miroslava | |
dc.contributor.coordinador | Ochoa Ortiz-Zezzatti, Alberto | |
dc.contributor.coordinador | Rivera, Gilberto | |
dc.contributor.coordinador | Gómez-Santillán, Claudia | |
dc.contributor.coordinador | Sánchez-Lara, Benito | |
dcrupi.estado | Pensilvania | es_MX |
dc.lgac | Sin línea de generación | es_MX |
dc.cuerpoacademico | Inteligencia Artificial Aplicada | es_MX |
dcrupi.titulolibro | Handbook of Research on Metaheuristics for Order Picking Optimization in Warehouses to Smart Cities. | es_MX |
Archivos en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Capítulo en libro [232]