Mostrar el registro sencillo del ítem

dc.contributor.authorAlvarado Rivera, Josefina
dc.date.accessioned2019-08-09T18:30:50Z
dc.date.available2019-08-09T18:30:50Z
dc.date.issued2019-01-31
dc.identifier.isbn978-3-030-02171-9es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/7997
dc.description.abstractOne of the most exciting opportunities in electronics, optoelectronics or flexible electronics is to be able to make devices based on organic semiconductors. Organic active materials can exhibit many advantages such as lower demands on processing technology with less sensitivity to the processing environment, flexibility, and the opportunity to apply the simplicity of organic synthesis to tailoring the properties of the materials for specific applications [1]. Depending on their vapor pressure and solubility, organic semiconductors are deposited either from a vapor or solution phase. In this section, some of the organic semiconductor deposition methods are discussed. Similar to its inorganic counterparts, organic semiconductors have been the subject of extensive research to produce organic electronic devices such as organic photovoltaic cells (OPV), organic field-effect transistors (OFET), and organic lightemitting diodes (OLED) [2, 3, 73–77, 82]. However, organic semiconductors have certain limitations such as a short lifetime, degradation byUVlight, temperature sensitivity, low efficiency compared to inorganic semiconductors, and not well understood charge transfer mechanisms. Despite these limitations, advantages like their lightweight, transparency, flexibility, and lower production cost make them candidates for the development of novel electronic devices fomenting research in this area. It is worthwhile to note that organic semiconductors have been combined with other carbon nanomaterials like carbon nanotubes, fullerenes, and graphene, to improve their charge carrier mobility, which is one of the limitations of polymers and oligomers.es_MX
dc.description.urihttps://www.springer.com/gp/book/9783030021696es_MX
dc.language.isoenes_MX
dc.publisherSpringer Nature Switzerlandes_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectOrganic Semiconductorses_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleOrganic Semiconductorses_MX
dc.typeCapítulo de libroes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.nopagina547-573es_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisSwitzerlandes_MX
dc.identifier.doi10.1007/978-3-030-02171-9es_MX
dc.contributor.coauthorMota , Maria de la Luz
dc.contributor.coauthorCarrillo, Amanda
dc.contributor.coordinadorPech-Canul, Martin I.
dc.lgacSin línea de generaciónes_MX
dc.cuerpoacademicoSin cuerpo académicoes_MX
dcrupi.titulolibroSemiconductors Synthesis, Properties and Applicationses_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09