Mostrar el registro sencillo del ítem

dc.contributor.authorSantiago Ramírez, Everardo
dc.date.accessioned2019-08-09T13:56:12Z
dc.date.available2019-08-09T13:56:12Z
dc.date.issued2019-05-18
dc.identifier.isbn978-3-030-21076-2es_MX
dc.identifier.isbn978-3-030-21077-9es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/7987
dc.description.abstractFace re-identification is an essential task in automatic video surveillance where the identity of the person is known previously. It aims to verify if other cameras have observed a specific face detected by a camera. However, this is a challenging task because of the reduced resolution, and changes in lighting and background available in surveillance video sequences. Furthermore, the face to get re-identified suffers changes in appearance due to expression, pose, and scale. Algorithms need robust descriptors to perform re-identification under these challenging conditions. Among various types of approaches available, correlation filters have properties that can be exploited to achieve a successful re-identification. Our proposal makes use of this approach to exploit both the shape and content of more representative facial images captured by a camera in a field of view. The resulting correlation filters can characterize the face of a person in a field of view; they are good at discriminating faces of different people, tolerant to variable illumination and slight variations in the rotation (in/out of plane) and scale. Further, they allow identifying a person from the first time that has appeared in the camera network. Matching the correlation filters generated in the field of views allows establishing a correspondence between the faces of the same person viewed by different cameras. These results show that facial re-identification under real-world surveillance conditions and biometric context can be successfully performed using correlation filters adequately designed.es_MX
dc.description.urihttps://doi.org/10.1007/978-3-030-21077-9_16es_MX
dc.language.isoenes_MX
dc.publisherSpringer International Publishinges_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectFace re-identificationes_MX
dc.subjectFace recognitiones_MX
dc.subjectBiometricses_MX
dc.subjectCorrelation filterses_MX
dc.subject.otherinfo:eu-repo/classification/cti/1es_MX
dc.titleFacial Re-identification on Non-overlapping Cameras and in Uncontrolled Environmentses_MX
dc.typeCapítulo de libroes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.nopagina170-182es_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisMéxicoes_MX
dc.identifier.doihttps://doi.org/10.1007/978-3-030-21077-9_16es_MX
dc.contributor.coauthorAcosta Guadarrama, Juan Carlos
dc.contributor.coauthorMejia, Jose
dc.contributor.coauthorDominguez, Josue
dc.contributor.coauthorGONZALEZ-FRAGA, JOSE ANGEL
dcrupi.estadoQuerétaroes_MX
dc.lgacSin línea de generaciónes_MX
dc.cuerpoacademicoSin cuerpo académicoes_MX
dcrupi.titulolibroPattern Recognitiones_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09